欢迎来到天天文库
浏览记录
ID:52481258
大小:363.87 KB
页数:13页
时间:2020-04-08
《中考数学之圆的基本定义.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、能力测评A卷讲解2013年连云港中考数学试卷〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。集合说:到定点的距离等于定长的点的集合叫做圆。〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两
2、点的线段叫做弦。经过圆心的弦叫做直径。圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。〖圆和圆的相关量字母表示方法〗圆—⊙半径—r弧—⌒直径—d扇形弧长/圆锥母线—l周长—C面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则
3、PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半
4、径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。【圆的平面几何性质和定理】〖有关圆的基本性质与定理〗圆的确定:不在同一直线上的三个点确定一个圆。圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。〖有关圆周角和圆心角的性质和定理〗在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应
5、的其余各组量都分别相等。一条弧所对的圆周角等于它所对的圆心角的一半。直径所对的圆周角是直角。90度的圆周角所对的弦是直径。〖有关外接圆和内切圆的性质和定理〗一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。〖有关切线的性质和定理〗圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
6、(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。切线的长定理:从圆外一点到圆的两条切线的长相等〖有关圆的计算公式〗1.圆的周长C=2πr=πd2.圆的面积S=πr^2;3.扇形弧长l=nπr/1804.扇形面积S=nπr^2;/360=rl/25.圆锥侧面积S=πrl【圆的解析几何性质和定理】〖圆的解析几何方程〗圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx
7、+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。圆的离心率e=0,在圆上任意一点的曲率半径都是r。〖圆与直线的位置关系判断〗平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。如果b^2-4ac=0,则圆与
8、直线有1交点,即圆与直线
此文档下载收益归作者所有