欢迎来到天天文库
浏览记录
ID:52474148
大小:1.34 MB
页数:75页
时间:2020-04-08
《空间几何体的表面积和体积周ppt (1).ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库。
1、1.3简单几何体的表面积和体积回忆复习有关概念1、直棱柱:2、正棱柱:3、正棱锥:4、正棱台:侧棱和底面垂直的棱柱叫直棱柱底面是正多边形的直棱柱叫正棱柱底面是正多边形,顶点在底面的射影是底面中心的棱锥正棱锥被平行于底面的平面所截,截面和底面之间的部分叫正棱台作直三棱柱、正三棱锥、正三棱台各一个,找出斜高COBAPD斜高的概念2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是什么形状的图形.ABCDABCABCD矩形等腰三角形等腰梯形①直棱柱:设棱柱的高为h,底面多边形的周长为c,则S直棱柱侧=.(类
2、比矩形的面积)②圆柱:如果圆柱的底面半径为r,母线长为l,那么S圆柱侧=.(类比矩形的面积)ch2πrl知识点一:柱、锥、台、球的表面积与侧面积(1)柱体的侧面积把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图2.棱柱、棱锥、棱台的展开图及表面积求法思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?宽=长方形圆柱的侧面展开图是矩形3.圆柱、圆锥、圆台的展开图及表面积求法圆柱O①正棱锥:设正棱锥底面正多边形的周长为c,斜
3、高为h′,则S正棱锥侧=.(类比三角形的面积)②圆锥:如果圆锥的底面半径为r,母线长为l,那么S圆锥侧=.(类比三角形的面积)1∕2ch′πrl(2)锥体的侧面积把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?棱锥的侧面展开图是什么?如何计算它的表面积?正三棱锥的侧面展开图棱锥的展开图侧面展开正五棱锥的侧面展开图棱锥的展开图思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇形圆锥的侧面展开图是扇形O圆锥①正棱台:设正n棱台的上底面、下底面周长分别为c′、c,斜高为h′,则正n棱台
4、的侧面积公式:S正棱台侧=.②圆台:如果圆台的上、下底面半径分别为r′、r,母线长为l,则S圆台侧=.1∕2(c+c′)h′πl(r′+r)(3)台体的侧面积注:表面积=侧面积+底面积.把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)侧面展开h'h'正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的展开图参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.OO’圆台的侧面展开图是扇环圆台思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?扇
5、环OO’侧圆台侧面积公式的推导OO’圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Or’=r上底扩大Or’=0上底缩小棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h'棱柱、棱锥、棱台的表面积它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E例2:圆台的上、下底面半径分别为2和4,高为,求其侧面展开图扇环所对的圆心角分析:抓住相似三角形中的相
6、似比是解题的关键小结:1、抓住侧面展开图的形状,用好相应的计算公式,注意逆向用公式;2、圆台问题恢复成圆锥图形在圆锥中解决圆台问题,注意相似比.答:1800例:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留π)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式C’=0C’=CS圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r2例1:一个正三棱柱的底面是边长为5的正三角形,侧棱长为4,则其侧面积为______;答:60例
7、2:正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,所以:因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,例4(2010年广东省惠州市高三调研)如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D,E是CC1,BC的中点,AE=DE.(1)求此正三棱柱的侧棱长;(2)正三棱柱ABC-A1B1C1的表面积.【思路点拨】(1)证明△AED为直
8、角三角形,然后求侧棱长;(2)分别求出侧面积与底面积.【点评】求表面积应分别求各部分面的面积,所以应弄清图形的形状,利用相应的公式求面积,规则的图形可直接求,不规则的图形往往要再进行转化,常分
此文档下载收益归作者所有