进化策略进化规划.ppt

进化策略进化规划.ppt

ID:52414283

大小:100.00 KB

页数:42页

时间:2020-04-05

进化策略进化规划.ppt_第1页
进化策略进化规划.ppt_第2页
进化策略进化规划.ppt_第3页
进化策略进化规划.ppt_第4页
进化策略进化规划.ppt_第5页
资源描述:

《进化策略进化规划.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、进化策略和进化规划德国学者Schwefel和Rechenburg美国学者Fogel分别提出进化策略ES和进化规划EP。这三种方法具有共同的本质,分别强调了自然进化中的不同方面:遗传算法强调染色体的操作,进化策略强调了个体级的行为变化。而进化规划则强调种群级上的行为变化。现在学术界把遗传算法GA、进化策略ES和进化规划EP通称为进化算法EC。8.1进化算法的早期研究进化算法起源于20世纪30年代的通过仿真生物进化过程进行机器学习的研究。早在1932年,Cannon就把自然进化想象为一个学习过程。与自

2、然进化过程的机制和结果稍微不同是,Cannon不是通过维持一个特定的种群来进行搜索,而是对单个个体反复进行随机试验。到了1950年,Turng认识到,在机器学习和进化之间存在着明显的关系。1959年,Friedman推测,利用变异和选择的仿真可以设计“思想机器”,并且指出下棋的程序可以用这种方法设计。在1960年,Cambell猜想:在导致知识扩张的所有过程中,都要涉及“盲目—变化—选择—幸存”的过程。此后,一些学者逐渐将进化理论用于随机工程控制、机器学习和函数优化等领域。8.2进化策略进化策略(

3、EvolutionaryStrategies)是在1965年由Rechenburg和Schwefel独立提出的。早期的进化策略的种群中只包含一个个体,并且只使用变异操作。在每一代中,变异后的个体与其父代进行比较,并选择较好的一个,这种选择策略被称为(1+1)策略。进化策略中的个体用传统的十进制实型数表示,即:Xt——第t代个体的数值,N(0,σ)——服从正态分布的随机数,其均值为零,标准差为σ。8.2进化策略进化策略的一般算法可以描述如下:问题为寻找实值n维矢量x,使得函数F(x):RnR取极值

4、。不失一般性,设此程序为极小化过程。从各维的可行范围内随机选取亲本xi,i=1,…,p的初始值。初始试验的分布一般是均匀分布。通过对于x的每个分量增加零均值和预先选定的标准差的高斯随机变量,从每个亲本xi产生子代x’i。通过将误差F(xi)和F(x’i),i=1,…,p进行排序,选择并决定哪些矢量保留。具有最小误差的p个矢量变成下一代的新亲本。进行新试验,选择具有最小方差的新子代,一直到获得充分解,或者直到满足某个终止条件8.2进化策略在这个模型中,把试验解的分量看做个体的行为特性,而不是沿染色体

5、排列的基因。可以和GA一样,假设这些表现型特征具有基因根源,但是它们之间的联系实质并没有被弄清楚,所以我们把着重点放在个体的行为特性上。假设不管发生什么遗传变换,所造成各个行为的变化均遵循零均值和某个标准差的高斯分布。由于基因多效性和多基因性,特定基因的改变可以影响许多表现型特征。所以在创造新子代时,较为合适的是同时改变亲本所有分量。8.2进化策略进化策略的最初试验采用上述算法,主要采用单亲本—单子代的搜索,即“(1+1)进化策略((1+1)-ES)”,其中单个子代是由单个亲本产生的,它们都被置于

6、生存竞争中,较弱的一个要被挑选出来消去。当把这种算法用于函数优化时,发现它有两个缺点:各维取定常的标准差使得程序收敛到最优解的速度很慢;点到点搜索的脆弱本质使得程序在局部极值附近容易受停滞的影响(虽然此算法表明可以渐近地收敛到全局最优点)。8.2进化策略(μ+1)-ES:早期的(1十1)-ES,没有体现群体的作用,只是单个个体在进化,具有明显的局限性。随后,Rechenberg又提出(μ+1)-ES,在这种进化策略中,父代有μ个个体(μ>1),并且引入重组(Recombination)算子,使父代

7、个体组合出新的个体。在执行重组时,从μ个父代个体中用随机的方法任选两个个体:8.2进化策略然后从这两个个体中组合出如下新个体:式中qi=1或2,它以相同的概率针对i=1,2,…,n随机选取。对重组产生的新个体执行突变操作,突变方式及σ的调整与(1+1)-ES相同。将突变后的个体与父代μ个个体相比较,若优于父代最差个体,则代替后者成为下一代μ个个体新成员,否则,重新执行重组和突变产生另一新个体,8.2进化策略(μ+1)-ES和(1+1)-ES具有相同的策略:只产生一个新个体。(μ+1)-ES的特点在

8、于:(1)采用群体,其中包含μ个个体;(2)增添重组算子,它相当于遗传算法中的交叉算子,从父代继承信息构成新个体。显然,(μ+1)-ES比(1+1)-ES有了明显的改进,为进化策略这种新的进化算法奠定良好的基础。8.2进化策略在1973年,Rechenburg把该算法的期望收敛速度定义为对最优点的平均距离与要得到此改善所需要的试验次数之比。1981年,Schwefel在进化策略中使用多重亲本和子代,这是Rechenburg早期工作(使用多重亲本,但是仅使用单个子代)的发展,后来考察

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。