《解直角三角形应用举例》.ppt

《解直角三角形应用举例》.ppt

ID:52373826

大小:1.68 MB

页数:23页

时间:2020-04-05

《解直角三角形应用举例》.ppt_第1页
《解直角三角形应用举例》.ppt_第2页
《解直角三角形应用举例》.ppt_第3页
《解直角三角形应用举例》.ppt_第4页
《解直角三角形应用举例》.ppt_第5页
资源描述:

《《解直角三角形应用举例》.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§28.2解直角三角形应用举例(2)用数学视觉观察世界用数学思维思考世界指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的什么方向?点B在点O的什么方向?30°45°BOA东西北南方位角课前复习例5如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(结果取整数)?PBCA利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化

2、为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.巩固练习:海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x则在Rt△AD

3、F中在Rt△ABF中,解得x=610.4>8没有触礁危险30°60°1.如图所示,轮船以32海里每小时的速度向正北方向航行,在A处看灯塔Q在轮船的北偏东30°处,半小时航行到B处,发现此时灯塔Q与轮船的距离最短,求灯塔Q到B处的距离(画出图像后再计算)ABQ30°相信你能行A2.如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()海里.海里C.7海里D.14海里D气象台发布的卫星云图显示,代号

4、为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图12所示的直角坐标系.x/kmy/km北东AOBC图12(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该

5、城要经过多长时间?x/kmy/km北东AOBC图12解:(1)(2)过点C作于点D,如图2,则在中台风从生成到最初侵袭该城要经过11小时.x/kmy/kmAOBC图2D王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离?ABC北南西东DE600100m200m练习新人教版九年级数学(下册)第二十八章§28.2解直角三角形(4)用数学视觉观察世界用数学思维思考世界修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)

6、的比叫做坡面坡度(或坡比).记作i,即i=.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有i==tana.显然,坡度越大,坡角a就越大,坡面就越陡.例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°在Rt△CDE中,∠CED=90°19.4.6如图一段路基的横断面是梯形

7、,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°.求路基下底的宽.(精确到0.1米)想一想1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.练习解作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知DE=CF=4.2(米),CD=EF=12.51(米).在Rt△ADE中,因为所以在Rt△BCF中,同理可得因此AB=AE+EF+BF≈6.72+12.51+7.90≈27.13(米).答:路基下底的宽约为27.13米.4如图,水库大坝的截面是梯形

8、ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=1350.(1)求坡角∠ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).咋办先构造直角三角形!ABCD2.01:2.51:2BCADEF探究题如图,沿水库拦水坝的背水坡将坝面加宽两米,坡度由原来的1:2改成1:2.5,已知原背水

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。