《正弦余弦函数》PPT课件.ppt

《正弦余弦函数》PPT课件.ppt

ID:52368843

大小:640.01 KB

页数:70页

时间:2020-04-05

《正弦余弦函数》PPT课件.ppt_第1页
《正弦余弦函数》PPT课件.ppt_第2页
《正弦余弦函数》PPT课件.ppt_第3页
《正弦余弦函数》PPT课件.ppt_第4页
《正弦余弦函数》PPT课件.ppt_第5页
资源描述:

《《正弦余弦函数》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象2.任意给定一个实数x,对应的正弦值(sinx)、余弦值(cosx)是否存在?惟一?问题提出1.在单位圆中,角α的正弦线、余弦线分别是什么?P(x,y)OxyMsinα=MPcosα=OM4.一个函数总具有许多基本性质,要直观、全面了解正、余弦函数的基本特性,我们应从哪个方面人手?3.设实数x对应的角的正弦值为y,则对应关系y=sinx就是一个函数,称为正弦函数;同样y=cosx也是一个函数,称为余弦函数,这两个函数的定义域是什么?正、余弦函数的图象知识探究(一):正弦函数

2、的图象思考1:作函数图象最原始的方法是什么?思考2:如何在直角坐标系中比较精确地描出这些点,并画出y=sinx在[0,2π]内的图象?xy1-1O2ππ思考3:观察函数y=sinx在[0,2π]内的图象,其形状、位置、凸向等有何变化规律?思考5:在函数y=sinx,x∈[0,2π]的图象上,起关键作用的点有哪几个?x-1O2ππ1y思考6:当x∈[2π,4π],[-2π,0],…时,y=sinx的图象如何?y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π思考7:函数y=sinx,x∈R的图象叫做正弦曲线,正弦曲线

3、的分布有什么特点?y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π知识探究(二):余弦函数的图象思考1:观察函数y=x2与y=(x+1)2的图象,你能发现这两个函数的图象有什么内在联系吗?xyo-1思考2:一般地,函数y=f(x+a)(a>0)的图象是由函数y=f(x)的图象经过怎样的变换而得到的?向左平移a个单位.思考3:设想由正弦函数的图象作出余弦函数的图象,那么先要将余弦函数y=cosx转化为正弦函数,你可以根据哪个公式完成这个转化?思考4:由诱导公式可知,y=cosx与是同一个函数,如何作函数在[0,2π

4、]内的图象?xyO2ππ1y=sinx-1思考5:函数y=cosx,x∈[0,2π]的图象如何?其中起关键作用的点有哪几个?xyO2ππ1-1思考6:函数y=cosx,x∈R的图象叫做余弦曲线,怎样画出余弦曲线,余弦曲线的分布有什么特点?xyO1-1理论迁移例1用“五点法”画出下列函数的简图:(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].xsinx1+sinx100001-11201x-1O2ππ1y2y=1+sinxxcosx-cosx101001-1-100-1x-1O2ππ1yy=-cosx

5、巩固提高:你能画出函数y=

6、sinx

7、,x∈[0,2π]的图象吗?yxOπ12π-1小结作业1.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.作与正、余弦函数有关的函数图象,是解题的基本要求,用“五点法”作图是常用的方法.作业布置:上本:P46习题1.4A组1课后:当堂检测第一课时1.4.2正弦函数、余弦函数的性质问题提出1.正弦函数和余弦函数的图象分别是什么?二者有何相互联系?y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-πy=sin

8、xxyO1-1y=cosx2.世界上有许多事物都呈现“周而复始”的变化规律,如年有四季更替,月有阴晴圆缺.这种现象在数学上称为周期性,在函数领域里,周期性是函数的一个重要性质.函数的周期性知识探究(一):周期函数的概念思考1:由正弦函数的图象可知,正弦曲线每相隔2π个单位重复出现,这一规律的理论依据是什么?.思考2:设f(x)=sinx,则可以怎样表示?其数学意义如何?思考3:为了突出函数的这个特性,我们把函数f(x)=sinx称为周期函数,2kπ为这个函数的周期.一般地,如何定义周期函数?对于函数f(x),如果存在一个非零常数T,

9、使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T就叫做这个函数的周期.思考4:周期函数的周期是否惟一?正弦函数的周期有哪些?思考5:如果在周期函数f(x)的所有周期中存在一个最小的正数,则这个最小正数叫做f(x)的最小正周期.那么,正弦函数的最小正周期是多少?为什么?正、余弦函数是周期函数,2kπ(k∈Z,k≠0)都是它的周期,最小正周期是2π.思考6:就周期性而言,对正弦函数有什么结论?对余弦函数呢?知识探究(二):周期概念的拓展思考1:函数f(x)=sinx(x≥0)是否为周

10、期函数?函数f(x)=sinx(x≤0)是否为周期函数?思考2:函数f(x)=sinx(x>0)是否为周期函数?函数f(x)=sinx(x≠3kπ)是否为周期函数?思考3:函数f(x)=sinx,x∈[0,10π]是否为周期函数?周期

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。