人教版九年级的数学上册教案:21.2.3 公式法.doc

人教版九年级的数学上册教案:21.2.3 公式法.doc

ID:52350816

大小:118.50 KB

页数:6页

时间:2020-03-26

人教版九年级的数学上册教案:21.2.3 公式法.doc_第1页
人教版九年级的数学上册教案:21.2.3 公式法.doc_第2页
人教版九年级的数学上册教案:21.2.3 公式法.doc_第3页
人教版九年级的数学上册教案:21.2.3 公式法.doc_第4页
人教版九年级的数学上册教案:21.2.3 公式法.doc_第5页
资源描述:

《人教版九年级的数学上册教案:21.2.3 公式法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、21.2.3公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x2-7x+1=0(

2、2)4x2-3x=52(老师点评)(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2-x=-配方,得:x2-x+()2=-+()2(x-)2=x-=±x1=+==1x2=-+==(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式

3、ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根x1=,6x2=分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2即(x+)2=∵b2-4ac≥0且4a2>0∴≥0直接开平方,得:x+=±即x=∴x1=,x2=由

4、上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.例1.用公式法解下列方程.(1)2x2-4x-1=0(2)5x+2=3x2(3)(x-2)(3x-5)=0(4)4x2-3x+1=0分析:用公式法

5、解一元二次方程,首先应把它化为一般形式,然后代入公式即可.解:(1)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=6∴x1=,x2=(2)将方程化为一般形式3x2-5x-2=0a=3,b=-5,c=-2b2-4ac=(-5)2-4×3×(-2)=49>0x=x1=2,x2=-(3)将方程化为一般形式3x2-11x+9=0a=3,b=-11,c=9b2-4ac=(-11)2-4×3×9=13>0∴x=∴x1=,x2=(3)a=4,b=-3,c=1b2-4ac=(-3)

6、2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.三、巩固练习教材P42练习1.(1)、(3)、(5)四、应用拓展例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元二次方程m是否存在?若存在,请求出.你能解决这个问题吗?分析:能.(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足:①或②或③解:

7、(1)存在.根据题意,得:m2+1=2m2=1m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)6∴当m=1时,方程为2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9x=x1=,x2=-因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.

8、③当m+1=0,即m=-1时,m-2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-.五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.六、布置作

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。