初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx

初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx

ID:52350159

大小:9.52 KB

页数:3页

时间:2020-03-26

初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx_第1页
初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx_第2页
初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx_第3页
资源描述:

《初等数学和高等数学的区别与联系 基于初等数学基础上的高等数学教学探讨.docx》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、初等数学和高等数学的区别与联系基于初等数学基础上的高等数学教学探讨  摘要随着基础教育的改革深化,高等教育也需要不断适应发展需要。就高等数学和初等数学的区别与联系进行阐述,提出提高高等数学教与学的对策,为进一步加强初等数学与高等数学的衔接研究提供参考。  关键词高等数学;初等数学;衔接  中图分类号G4文献标识码A文章编号1673-9671-(2010)042-0177-01    国家中长期教育改革和发展规划纲要(2010-2020)指出,深化教育体制改革,关键是更新教育观念,核心是改革人才培养体制,目的是提高人才培养水平。树立系统培养观念,推进大中小学有机衔接,教学

2、、科研、实践紧密结合,学校、家庭、社会密切配合,加强学校之间、校企之间、学校与科研机构之间合作以及中外合作等多种联合培养方式,形成体系开放、机制灵活、渠道互通、选择多样的人才培养体制。随着基础教育的进一步深化,高等教育如何改革以适应教育发展需要,成为人们关注的焦点。  1初等数学与高等数学的区别联系  初等数学研究的是常量,高等数学研究的是变量。初等数学是常量的、静态的数学,它只能解决和解释常量的几何问题和物理问题,比如规则图形的长度、面积和体积,匀速直线运动,常力沿直线的作功,质点间的吸引力等;高等数学是变量的、动态的数学,它解释和解决那些变化的几何问题和物理过程,特

3、别是描述一些物体的渐近行为和瞬时物理量等,比如不规则图形的面积,曲线的长度,变力作功等。  从系统论的角度来看,数学与教学之间必须相互配合协调、有机衔接,才能产生良好的教学效果,提高教学质量,否则,将会出现数学兴趣低、效果差等不良现象,直接或间接影响高技能人才的培养和教育资源的极大浪费。长期以来,在初等数学和高等数学的实际教学过程中,存在一些问题:一是由于教学课程改革,把有些在大学学习的内容放到中学讲授,增加了中学数学教材内容,而实际上大学和中学教材缺乏统一的标准,各自为政,教学内容没有明确合理的分配、重复多、前后脱节,衔接不到位。二是由于应试教育的负面影响,中学的教学

4、方式以灌输式为主,进度慢、理论深度不高,教师教授某个内容后,一般都要求学生反复练习,不断巩固,直到掌握;而高等数学课程起点高,难度大,讲授速度快,抽象性强,教师只是提纲挈领,课后交流辅导少。学习方式转变为由随从变主动,教学由灌输变自主。  初等数学和高等数学都是对客观现实进行不断抽象进而从量与关系方面进行研究的一种模式,是来源于社会实践的需要。数学在自身向前发展的同时,又日益促进着社会的发展,无论是初等数学还是高等数学,其研究的对象并不像物理学、化学一样具有客观实物形象,而是抛弃了具体事务的质的特性而仅仅从量与关系方面进行描述的一种模式。随着希尔伯特形式化公理系统的提出

5、,数学研究的这种模式越来越远离现实和一般人的常规思维。  2加强初等数学与高等数学联系的意义  近些年来,高校不少学生对学习高等数学存在不少看法,如:“现在学习的高等数学好像与初等数学联不大系”,“学习高等数学对今后工作作用不大”,有的甚至提出:“高等数学在初等数学中基本用不上”等等。其实,这完全是认识上的偏见。高等数学是初等数学的延续和发展,而初等数学是高等数学的基础。作为学习和研究数学的途径,无疑应该先学习和掌握初等数学,然后才能学习和掌握高等数学。反之,学习高等数学能加深加宽对初等数学的理解,可以提高我们的数学修养,开阔思路,提高解决问题的能力。  1)对初等数学

6、的学习和教学具有指导作用。高等数学是在初等数学的基础上发展起来的,前者是后者的延续和补充,如《高等几何》、《高等代数》就分别是在《初等几何》、《初等代数》基础上逐步发展起来的。高等数学的发展使我们对初等数学的认识更加深刻全面,如:用初等数学的方法研究数学的增减性,凹凸性,求极值,最值等种种特性有很大的局限性,而在高等数学中利用导数知识就可比较完美研究函数的特性。学习高等数学可以帮助学生形成正确的数学观念。近些年来,许多教育家提出:数学教育的目的是培养学生的数学观念,把数学科学理解为一个巨大的相互联系的整体。在初等数学中,代数、几何、三角等各自分离门户,各有个的观点和方法

7、。然而在需要运用数学知识解题时却往往要综合运用各科知识,而学生长期习惯于分门别类地学习,往往错误的认为它们是各自孤立的学科,因而难于综合运用各门知识,可以说,这样的学生形成了不正确的数学观念。2)对初等数学理论上的支持。在初等数学的发展中当时不能或不易解决的问题,运用高等数学的理论和方法可得到圆满的解决。如高次求根问题,初等几何问题等都得到了圆满的解决。还比如在现行中学教材中的数学归纳法,只讲怎样用数学归纳法而不谈数学归纳法的证明,中学教材这样处理是考虑中学生的知识水平,年龄特征等。但在高等数学中不但给出了数学归纳法的原理,还可以由该原理

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。