资源描述:
《电磁场与电磁波课件第六章时变电磁场.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章时变电磁场时变电磁场:随时间变化的电场磁场静态场是时变场的特殊形式。10/7/20211第六章时变电磁场的特点电场和磁场不再独立,而是互相依存、互相转化。即变化的磁场会产生电场;变化的电场也能产生磁场。电场和磁场不可分割地成为统一的电磁现象。时变电磁场的核心理论是麦克斯韦方程组。10/7/20212第六章6.1法拉第电磁感应定律与麦氏第二方程6.1.1法拉第电磁感应定律(实验):物理意义:通过任意闭合导线回路的磁通发生变化,回路中就会产生感应电流,感应电流的产生可以认为是产生了感应电动势.电磁感应试验10/7/20213第六章感应电动势可以写成感应电场闭合回路积分的形式:由于感应
2、电场是变化磁场产生的,为非库仑场(分布电荷产生的电场为库仑场),其环路线积分值不恒为零。10/7/20214第六章6.1.2麦克斯韦第二方程:若静止媒质中既有感应电场,又有库仑场库,其总电场为,则库=+库而Maxwell第二方程积分形式故10/7/20215第六章据斯托克斯定理:则上式说明:变化的磁场能产生电场,且电场不再是无旋场.同理:当时,则说明:恒定磁场是独立的,若其中存在电场,也必是库仑场或恒定电场,为无旋场.Maxwell第二方程微分形式或者说随时间变化的磁场也是产生电场的源(漩涡源);10/7/20216第六章IfIhavebeenabletoseefurther,itwa
3、sonlybecauseIstoodontheshouldersofgiants.如果说我比别人看得更远些,那是因为我站在了巨人的肩上.——牛顿10/7/20217第六章6.2位移电流和全电流定律6.2.1、安培环路定律:真实电流传导运流对上式两边取散度,则:左边右边电流连续性方程时变情况下,即式两边取散度后,时变情况,左边不等于右边.缺陷10/7/20218第六章而电流连续性方程为即定义:位移电流密度安培环路定律的修正:10/7/20219第六章于是安培环路定律形式被修正为:安培环路定律的微分形式10/7/202110第六章6.2.2全电流定律:含传导电流、运流电流、位移电流,故称全
4、电流定律。其中传导电流、运流电流称真实电流。全电流定律:由斯托克斯定理:则上式说明:变化的电场产生磁场。积分形式10/7/202111第六章例:海水的电导率,相对介电常数,若设海水中的电场是按余弦变化的,,求当和时,位移电流同传导电流幅值的比值。解:位移电流密度为:其振幅为:传导电流密度为:其振幅为:10/7/202112第六章则位移电流与传导电流幅值之比为:当时,当时,比较运算结果发现:当频率越高时,位移电流越大,其产生的磁场也越大。这就是为什么时变电磁场在实际应用中往往使用较高频率的缘故。10/7/202113第六章6.3.1麦克斯韦方程组麦克斯韦归纳为四个方程,其积分形式和微分形
5、式分别如下:积分形式微分形式全电流定律电磁感应定律磁通连续性原理高斯定律6.3麦克斯维方程组10/7/202114第六章•全电流定律-麦克斯韦第一方程,表明除电流以外,随时间变化的电场也是产生磁场的源(漩涡源);•电磁感应定律-麦克斯韦第二方程,表明随时间变化的磁场也是产生电场的源(漩涡源);•磁通连续性原理-表明磁场是无散场,即不存在磁荷,磁力线总是闭合曲线;•高斯定律-电场是有散场,电荷是产生电场的源(变化的磁场以涡旋的形式产生电场)。•麦克斯韦第一、二方程是独立方程,后面两个方程可以从中推得。(2)物理意义10/7/202115第六章上述给出的麦克斯韦方程组的微分形式和积分形式描
6、述了时变电磁场在任意空间中的一般运动规律,但它不能限定时变电磁场在某一确定空间中的运动规律。因此,上述给出的麦克斯韦方程通常被称为麦克斯韦方程的非限定形式,因为它没有限定和之间及和之间的关系,故适用于任何媒质。10/7/202116第六章在线性和各向同性的介质中,有关场量之间的关系为称为媒质的本构关系。这里假设了媒质中仅存在传导电流.6.3.2麦克斯韦方程组的限定形式10/7/202117第六章此时,麦克斯韦方程可用和两个场量写出上式称为麦克斯韦方程组的限定形式。10/7/202118第六章例6-410/7/202119第六章6.4分界面上的边界条件6.4.1不同媒质分界面上的边界条件
7、:1、电场强度的切向分量总是连续的:①②证明:如图所示,取一狭长闭合曲线C方向如图由麦氏第二方程:即当时10/7/202120第六章①②由于有限,则等式右边故有即切向分量连续10/7/202121第六章①②2、的切向分量在分界面上无时是连续的,否则不连续。证明:即而有限,故则10/7/202122第六章3、的法向分量在分界面上无时是连续的,否则不连续。①②证明:即4、磁感应强度的法向分量永远连续:10/7/202123第六章6.4.2理想介质分