欢迎来到天天文库
浏览记录
ID:52331359
大小:942.50 KB
页数:25页
时间:2020-04-04
《2018秋沪科版八年级数学上册第13章教学课件:13.2-第3课时-三角形内角和定理的证明及推论1、2(共25张PPT).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、13.2命题与证明--三角形内角和定理的证明及推论1、21.掌握“三角形内角和定理”的证明及其简单应用,理解和掌握三角形内角和定理的推论1和推论2;(重点、难点)2.了解辅助线的概念,理解辅助线在解题过程中的用处;(难点)3.经历思考、操作、推理等学习活动,培养学生的推理能力和表达能力.(难点)学习目标我的形状最小,那我的内角和最小.我的形状最大,那我的内角和最大.不对,我有一个钝角,所以我的内角和才是最大的.一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧.导入新课情境引入思考:除了度量以外,你还有什么办法可以验证三角形的内角和为
2、180°呢?折叠还可以用拼接的方法,你知道怎样操作吗?三角形的三个内角拼到一起恰好构成一个平角.你能用数学的方法说明这个结论吗?还有其他的拼接方法吗?讲授新课三角形的内角和的证明一活动:在纸上任意画一个三角形,将它的内角剪下拼合在一起.三角形三个内角的和等于180°.求证:∠A+∠B+∠C=180°.已知:△ABC.证法1:过点A作l∥BC,∴∠B=∠1.(两直线平行,内错角相等)∠C=∠2.(两直线平行,内错角相等)∵∠2+∠1+∠BAC=180°,∴∠B+∠C+∠BAC=180°.12证法2:延长BC到D,过点C作CE∥BA,∴∠A=∠1.(两直线平行,内错角相等)∠B=∠2.(
3、两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=180°.CBAED12CBAEDF证法3:过D作DE∥AC,作DF∥AB.∴∠C=∠EDB,∠B=∠FDC.(两直线平行,同位角相等)∠A+∠AED=180°,∠AED+∠EDF=180°,(两直线平行,同旁内角相补)∴∠A=∠EDF.∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°.想一想:同学们还有其他的方法吗?思考:多种方法证明的核心是什么?借助平行线的“移角”的功能,将三个角转化成一个平角.CAB12345lACB12345lP6mABCDE知识要点在这里,为了证明的需
4、要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.思路总结为了证明三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.作辅助线问题:如图,在Rt△ABC中,∠C=90°,两锐角的和等于多少呢?在Rt△ABC中,因为∠C=90°,由三角形内角和定理,得∠A+∠B+∠C=90°,即∠A+∠B=90°.思考:由此,你可以得到直角三角形有什么性质呢?三角形内角和定理的推论1、2二直角三角形的两锐角互余.三角形内角和推论1:ABC直角三角形的两个锐角互余.应用格式:在Rt△ABC中,∵ ∠C=90°,∴ ∠A+∠B=90°.直角三角形的表
5、示:直角三角形可以用符号“Rt△”表示,直角三角形ABC可以写成Rt△ABC.总结归纳方法一(利用平行的判定和性质):∵∠B=∠C=90°,∴AB∥CD,∴∠A=∠D.方法二(利用直角三角形的性质):∵∠B=∠C=90°,∴∠A+∠AOB=90°,∠D+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠D.例1(1)如图,∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?图典例精析解:∠A=∠C.理由如下:∵∠B=∠D=90°,∴∠A+∠AOB=90°,∠C+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠C.(2)如图,∠B=∠D=90°,AD交BC于点O,∠A与
6、∠C有什么关系?请说明理由.图与图有哪些共同点与不同点?例2如图,∠C=∠D=90°,AD,BC相交于点E.∠CAE与∠DBE有什么关系?为什么?ABCDE解:在Rt△ACE中,∠CAE=90°-∠AEC.在Rt△BDE中,∠DBE=90°-∠BED.∵∠AEC=∠BED,∴∠CAE=∠DBE.解:∵CD⊥AB于点D,BE⊥AC于点E,∴∠BEA=∠BDF=90°,∴∠ABE+∠A=90°,∠ABE+∠DFB=90°.∴∠A=∠DFB.∵∠DFB+∠BFC=180°,∴∠A+∠BFC=180°.【变式题】如图,△ABC中,CD⊥AB于D,BE⊥AC于E,CD,BE相交于点F,∠A
7、与∠BFC又有什么关系?为什么?思考:通过前面的例题,你能画出这些题型的基本图形吗?基本图形∠A=∠C∠A=∠D总结归纳问题2:有两个角互余的三角形是直角三角形吗?如图,在△ABC中,∠A+∠B=90°,那么△ABC是直角三角形吗?在△ABC中,因为∠A+∠B+∠C=180°,又∠A+∠B=90°,所以∠C=90°.于是△ABC是直角三角形.三角形内角和推论2:有两个角互余的三角形是直角三角形.ABC应用格式:在△ABC中,∵ ∠A+∠B=90°,∴ △A
此文档下载收益归作者所有