欢迎来到天天文库
浏览记录
ID:52318861
大小:292.00 KB
页数:10页
时间:2020-03-26
《湖南省雅礼中学2019届高三第七次月考数学文试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、湖南省雅礼中学2019届高三第七次月考数学理试题考试时间:120分钟满分:150分一.选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合要求的。1、若集合,,则集合等于(D)A.B.C.D.2、复数,,则复数在复平面内对应的点位于(A)A.第一象限B.第二象限C.第三象限D.第四象限3、若向量,,则等于(B)A.B.C.D.4、若,且,则等于(A)A.B.C.D.5、已知命题R,R,给出下列结论:①命题“”是真命题②命题“”是假命题③命题“”是真命题④命题“
2、”是假命题其中正确的是(B)A.②④B.②③C.③④D.①②③6.分配4名水暖工去3个不同的居民家里检查暖气管道.要求4名水暖工都分配出去,并每名水暖工只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有(C)A.种B.种·10·C.种D.种7、设F1,F2是椭圆的两个焦点,P是椭圆上的点,且,则的面积为(D)A.4B.C.D.68、若展开式的二项式系数之和为64,则展开式的常数项为(B)A.10B.20C.30D.1209、数列满足,则的整数部分是()BA.0B.1C.2D.310、
3、在平面直角坐标系中,则所表示的区域的面积为()DA.6B.C.D.二.填空题:共25分。把答案填在答题卡中对应题号后的横线上。11、如图,的两条弦,相交于圆内一点,若,,则该圆的半径长为 .答案:·10·12、曲线:(为参数)上的点到曲线:(为参数)上的点的最短离为.答案:113、设,且,则的最小值为答案:1614、计算的结果是答案:15、已知是函数图像上的点,是双曲线在第四象限这一分支上的动点,过点作直线,使其与双曲线只有一个公共点,且与轴、轴分别交于点,另一条直线与轴、轴分别交于点。则(1)
4、为坐标原点,三角形的面积为(2)四边形面积的最小值为答案:(1)12(2)4816、已知数列共有9项,其中,,且对每个,均有。(1)记,则的最小值为(2)数列的个数为答案:(1)6;(2)491解析:令,则对每个符合条件的数列,满足条件:,且反之,由符合上述条件的八项数列可唯一确定一个符合题设条件的九项数列。·10·记符合条件的数列的个数为,显然,中有个,个,个,且的所有可能取值为。(1)对于三种情况,易知当时,取到最小值;(2)三、解答题:本大题共6小题,共75分。解答应写出文字说明,证明过程
5、或演算步骤。17、(本题满分12分)某校从参加高一年级期末考试的学生中抽出名学生,将其成绩(均为整数)分成六段,,…,后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求第四小组的频率;(Ⅱ)从成绩是分以上(包括分)的学生中选两人,求这两人的成绩在内的人数的分布列及期望.【解】(Ⅰ)因为各组的频率和等于1,故第四组的频率:.…………………………….4分(Ⅱ)设人数为,x012PEx=.……………………………12分18.(本小题满分12分)已知函数的最小正周期为,当时,函数的最小值
6、为0.(Ⅰ)求函数的表达式;·10·(Ⅱ)在中,若的值.【解】(Ⅰ)……2分依题意函数所以…………4分(Ⅱ)19、(本题满分12分)如图,四棱锥中,底面是边长为2的正方形,,且。(Ⅰ)求证:平面; (Ⅱ)若为线段的中点,为中点.求点到平面的距离.·10·19.(Ⅰ)证明:∵底面为正方形,∴,又,∴平面,∴.………………3分同理,………………5分∴平面.………………6分PABCDEFyxz(Ⅱ)解:建立如图的空间直角坐标系,则.∵为中点,∴同理,设为平面的一个法向量,则,.又,令则.得.…………1
7、0分又∴点到平面的距离.…………12分20、(本题满分13分)容器内装有6升质量分数为20%的盐水溶液,容器内装有4升质量分数为5%的盐水溶液,先将内的盐水倒1升进入内,再将内的盐水倒1升进入内,称为一次操作;这样反复操作次,容器内的盐水的质量分数分别为,(I)问至少操作多少次,两容器内的盐水浓度之差小于1%?(取lg2=0.3010,lg3=0.4771)·10·(Ⅱ)求的表达式。解:(1);………2分;…………………4分的等比数列,,,故至少操作7次;…………………7分(2)……9分…………
8、11分而…………………13分21、(本题满分13分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.(I)证明:;(Ⅱ)若的面积取得最大值时的椭圆方程.【解】(1)证明:由得将代入消去得①…………………………3分由直线l与椭圆相交于两个不同的点得·10·整理得,即………5分(2)解:设由①,得∵而点,∴得代入上式,得……………8分于是,△OAB的面积--------10分其中,上式取等号的条件是即……………………11分由可得将及这两组值分别代入①,均可解出∴△OAB的面积取得最大值的
此文档下载收益归作者所有