欢迎来到天天文库
浏览记录
ID:52285154
大小:2.16 MB
页数:83页
时间:2020-03-26
《高考数学复习资料.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考数学复习资料高考冲刺:分类讨论思想热点分析高考动向分类讨论是一种重要的逻辑方法,也是中学数学中经常使用的数学思想方法之一.突出考查学生思维的严谨性和周密性,以及认识问题的全面性和深刻性,提高学生分析问题,解决问题的能力,能体现“着重考查数学能力”的要求.因此分类讨论是历年数学高考的重点与热点.而且也是高考的一个难点.数学中的分类讨论贯穿教材的各个部分,它不仅形式多样,而且具有很强的综合性和逻辑性.知识升华1.分类讨论的常见情形(1)由数学概念引起的分类讨论:主要是指有的概念本身是分类的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、直线斜率
2、、指数函数、对数函数等.(2)由性质、定理、公式引起的分类讨论:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定,等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.(3)由某些数学式子变形引起的分类讨论:有的数学式子本身是分类给出的,如ax2+bx+c>0,a=0,a<0,a>0解法是不同的.(4)由图形引起的分类讨论:有的图形的类型、位置也要分类,如角的终边所在象限,点、线、面的位置关系等.(5)由实际意义引起的讨论:此类问题在应用题中常见.(6)由参数变
3、化引起的讨论:所解问题含有参数时,必须对参数的不同取值进行分类讨论;含有参数的数学问题中,参变量的不同取值,使得变形受限导致不同的结果.2.分类的原则(1)每次分类的对象是确定的,标准是同一的;分类讨论问题的难点在于什么时候开始讨论,即认识为什么要分类讨论,又从几方面开始讨论,只有明确了讨论原因,才能准确、恰当地进行分类与讨论.这就要求我们准确掌握所用的概念、定理、定义,考虑问题要全面.函数问题中的定义域,方程问题中根之间的大小,直线与二次曲线位置关系中的判别式等等,常常是分类讨论划分的依据.(2)每次分类的对象不遗漏、不重复、分层次、不越级讨论.当问题中
4、出现多个不确定因素时,要以起主导作用的因素进行划分,做到不重不漏,然后对划分的每一类分别求解,再整合后得到一个完整的答案.数形结合是简化分类讨论的重要方法.3.分类讨论的一般步骤第一,明确讨论对象,确定对象的范围;第二,确定分类标准,进行合理分类,做到不重不漏;第三,逐类讨论,获得阶段性结果;第四,归纳总结,得出结论.4.分类讨论应注意的问题第一,按主元分类的结果应求并集.第二,按参数分类的结果要分类给出.第三,分类讨论是一种重要的解题策略,但这种分类讨论的方法有时比较繁杂,若有可能,应尽量避免分类.经典例题透析类型一:不等式中的字母讨论1、解关于的不等式
5、:.思路点拨:依据式子的特点,此题应先按对最高次项的系数是否为0来分类,然后对式子分解因式,并按两个根之间的大小关系来分类讨论.而对于与时,先写简单好作的.解析:(1)当时,原不等式化为一次不等式:,∴;(2)当时,原不等式变为:,①若,则原不等式化为∵,∴,∴不等式解为或,②若,则原不等式化为,(ⅰ)当时,,不等式解为,(ⅱ)当时,,不等式解为;(ⅲ)当时,,不等式解为,综上所述,原不等式的解集为:当时,解集为;当时,解集为{x
6、x>1};当时,解集为;当时,解集为;当时,解集为.总结升华:1.对于分类讨论的解题程序可大致分为以下几个步骤:(1)明确讨论
7、的对象,确定对象的全体,确定分类标准,正确分类,不重不漏;(2)逐步进行讨论,获得结段性结论;(3)归纳总结,综合结论.2.一般分类讨论问题的原则为:按谁碍事就分谁.不等式中的字母讨论标准有:最高次项的系数能否为0,不等式对应的根的大小关系,有没有根(判别式)等.3.字母讨论一般按从易到难,从等到不等的顺序进行.举一反三:【变式1】解关于的不等式:().解析:原不等式可分解因式为:,(下面按两个根与的大小关系分类)(1)当,即或时,不等式为或,不等式的解集为:;(2)当,即时,不等式的解集为:;(3)当,即或时,不等式的解集为:;综上所述,原不等式的解集为
8、:当或时,;当时,;当或时,.【变式2】解关于的不等式:.解析:(1)当时,不等式为,解集为;(2)当时,需要对方程的根的情况进行讨论:①即时,方程有两根.则原不等式的解为.②即时,方程没有实根,此时为开口向上的抛物线,故原不等式的解为.③即时,方程有两相等实根为,则原不等式的解为.(3)当时,恒成立,即时,方程有两根.此时,为开口向下的抛物线,故原不等式的解集为.综上所述,原不等式的解集为:当时,解集为;当时,解集为;当时,解集为;当时,解集为.类型二:函数中的分类讨论2、设为实数,记函数的最大值为,(Ⅰ)设,求的取值范围,并把表示为的函数;(Ⅱ)求;(
9、Ⅲ)试求满足的所有实数.解析:(I)∵,∴要使有意义,必须且,即∵
此文档下载收益归作者所有