欢迎来到天天文库
浏览记录
ID:52202073
大小:180.80 KB
页数:3页
时间:2020-03-24
《九年级数学上册第二十三章旋转23.2中心对称23.2.1中心对称导学案(新版)新人教版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、23.2 中心对称23.2.1 中心对称1.了解中心对称、对称中心、关于中心的对称点等概念.2.掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(centralsymmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对
2、称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D重合.2.如图,已知AD是△ABC的中线,作出
3、以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹
4、,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第
5、三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)
此文档下载收益归作者所有