欢迎来到天天文库
浏览记录
ID:52200832
大小:1.37 MB
页数:51页
时间:2020-04-02
《2014届高三数学一轮复习:数列求和.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、[知识能否忆起]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式,注意等比数列公比q的取值情况要分q=1或q≠1.2.一些常见数列的前n项和公式:(1)1+2+3+4+…+n=;(2)1+3+5+7+…+2n-1=;(3)2+4+6+8+…+2n=.n2n2+n二、非等差、等比数列求和的常用方法1.倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,等差数列的前n项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等
2、差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,等比数列的前n项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[小题能否全取]1.(2013·沈阳六校联考)设数列{(-1)n}的前n项和为Sn,则对任意正整数n,Sn=()答案:D答案:C数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特
3、殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[例1](2011·山东高考)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.分组转化法求和第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项
4、公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前2n项和S2n.[自主解答](1)当a1=3时,不合题意;当a1=2时,当且仅当a2=6,a3=18时,符合题意;当a1=10时,不合题意.因此a1=2,a2=6,a3=18.所以公比q=3,故an=2·3n-1.分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.[例2](2012·江西高考)已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3.(1)求a
5、n;(2)求数列{nan}的前n项和Tn.错位相减法求和用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.2.(2013·济南模拟)已知等比数列{an}的前n项和为Sn,且满足Sn=3n+k.(1)求k的值及数列{an}的通项公式;解:(1)当n≥2时,由an=Sn-Sn-1=3n+k-3n-1-k=2·3n-1
6、,得等比数列{an}的公比q=3,首项为2.∴a1=S1=3+k=2,∴k=-1,∴数列{an}的通项公式为an=2·3n-1.裂项相消法求和[例3]已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(1)求数列{an}的通项公式;[自主解答](1)∵Sn=nan-n(n-1),当n≥2时,Sn-1=(n-1)·an-1-(n-1)(n-2),∴an=Sn-Sn-1=nan-n(n-1)-(n-1)an-1+(n-1)·(n-2),即an-an-1=2.∴数列{an}是首项a1=1,公差d=2的等差数列,故an=
7、1+(n-1)·2=2n-1,n∈N*.利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;3.(2012·“江南十校”联考)在等比数列{an}中,a1>0,n∈N*,且a3-a2=8,又a1、a5的等比中项为16.(1)求数列{an}的通项公式;解:(1)设数列{an}的公比为q,由题意可得a3=16,∵a3-a2=8,则a2=8,∴q=2.∴an=2n+1.数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一
8、起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力.“大题规范解答——得全分”系列之(五)利用
此文档下载收益归作者所有