资源描述:
《《相似三角形的判定2》课件2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.1相似三角形的判定(2)1.对应角_______,对应边——————的两个三角形,叫做相似三角形.相等成比例2.相似三角形的———————,各对应边——————。对应角相等成比例回顾3.如何识别两三角形是否相似?∵DE∥BC∴△ADE∽△ABC平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。DEOBCABCDE1.如图,在△ABC中,DG∥EH∥FI∥BC,(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG:BC=_____。ABCDEFGHI△ADG∽△AEH∽△AFI∽△ABC1:4练习:1.如图,△ABC中,D
2、E∥BC,GF∥AB,DE、GF交于点O,则图中与△ABC相似的三角形共有多少个?请你写出来.解:与△ABC相似的三角形有3个:△ADE△GFC△GOEABCDEFGO运用4ABCDEF3、如图,E是平行四边形ABCD的边BC的延长线上一点,连接AE交CD于F,则图中共有相似三角形_______对3探究1任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的K倍,度量这两个三角的对应角,它们相等吗?这两个三角形相似吗?相互交流一下,看看是否有同样的结论.三边对应成比例思考是否有△ABC∽△A’B’C’?ABCC’B’A’已知:如图△ABC和△A`B`C`中A`B`:AB=
3、A`C`:AC=B`C`:BC.求证:△ABC∽△A`B`C`证明:在△ABC的边AB(或延长线)上截取AD=A`B`,A`B`C`ABCDE过点D作DE∥BC交AC于点E.回顾ABCC’B’A’△ABC∽△A’B’C’简单地说:三边对应成比例,两三角形相似.如果一个三角形的三组对应边的比相等,那么这两个三角形相似.类似于判定三角形全等的方法,我们能通过两边和夹角来判断两个三角形相似呢?探究2如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.类似于证明通过三边判定三角形相似的方法,请你自己证明这个结论.已知:如图△ABC和△A`B`C`中,∠A=∠A`,∠A
4、`,A`B`:AB=A`C`:AC.求证:△ABC∽△A`B`C`A`B`C`ABCED思考?对于△ABC和△A’B’C’,如果,∠B=∠B’,这两个三角形一定相似吗?试着画画看.3.23.2GC50°)4AB21.650°)EDF∵==1.5判断图中△AEB和△FEC是否相似?解:∴△AEB∽△FEC∵∠1=∠2==1.5∴=54303645EAFCB12已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.ΔADQ与ΔQCP是否相似?为什么?例1:根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由.(1)∠A=1200,AB=7cm,AC=14
5、cm.∠A’=1200,A’B’=3cm,A’C’=6cm.(2)AB=4cm,BC=6cm,AC=8cm,A’B’=12cm,B’C’=18cm,A’C’=21cm.∴ΔABC∽ΔADE∴∠BAC=∠DAE∴∠BAC━∠DAC=∠DAE━∠DAC即∠BAD=∠CAE1.如图已知,试说明∠BAD=∠CAE.ADCEB2如图,AB•AE=AD•AC,且∠1=∠2,求证:△ABC∽△AED.理解4:2=5:x=6:y4:x=5:2=6:y4:x=5:y=6:2要作两个形状相同的三角形框架,其中一个三角形的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?
6、4562如图,AB⊥BC,DC⊥BC,垂足分别为B、C,且AB=8,DC=6,BC=14,BC上是否存在点P使△ABP与△DCP相似?若有,有几个?并求出此时BP的长,若没有,请说明理由。探索8614请你帮忙:图纸上上有不锈钢三角架的长分别为3cm,4cm,5cm,库存的不锈钢条有两根中,一根长60cm,另一根长180cm,工人师傅想用其中一根做三角架的一边,在另一根上取两截,用来做三角架的另外两边,使做成的三角架与图纸上的形状相同(即图形相似)。请帮他确定:共有几种不同的做法(焊接用料略去不计)?哪一种放大的倍数最大?最大的倍数是多少?3cm4cm5cm北如图:一条河流,在河流的北岸
7、点A处有一根高压电线杆。河流的南岸点B处有一颗大树。且电线杆在大树的正北方向上。在大树的正东方的点C处有一雕像,你能利用本节课学习的知识大致测算出电线杆A与大树B之间的距离吗?若用皮尺测得:BC=40米,CD=20米,DE=60米,你能计算出电线杆A与大树B之间的距离吗?ABCDE学以致用