《次函数性质总汇》PPT课件.ppt

《次函数性质总汇》PPT课件.ppt

ID:52092559

大小:879.50 KB

页数:32页

时间:2020-03-31

《次函数性质总汇》PPT课件.ppt_第1页
《次函数性质总汇》PPT课件.ppt_第2页
《次函数性质总汇》PPT课件.ppt_第3页
《次函数性质总汇》PPT课件.ppt_第4页
《次函数性质总汇》PPT课件.ppt_第5页
资源描述:

《《次函数性质总汇》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、复习巩固二次函数相关性质总汇明泽惠2013.12.1二次函数解析式特征一般地,形如的函数,叫做二次函数.其中,是x自变量,a,b,c分别是函数表达式的二次项系数、一次项系数和常数项.(1)等号左边是函数y,右边是关于自变量x的(3)等式右边的最高次数为,可以没有一次项和常数项,但.注意:(2)a,b,c为常数,且(4)自变量x的取值范围是整式a≠0.2任意实数y=ax2+bx+c(a、b、c为常数,a≠0)不能没有二次项一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线的开口向上,顶点是抛物线的最低点,a越大

2、,抛物线的开口越小;当a<0时,抛物线的开口向_______,顶点是抛物线的最________点,a越大,抛物线的开口越_________.下高大温故知新y=ax2(a≠0)a>0a<0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x<0时,y随着x的增大而减小。当x>0时,y随着x的增大而增大。当x<0时,y随着x的增大而增大。当x>0时,y随着x的增大而减小。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由

3、a

4、来确定的,一般说来,

5、a

6、越大,抛物线的开口就

7、越小.2、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)。(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y<0.(0,0)y轴对称轴的右对称轴的左00上下增大而增大增大而减小0x…..-2-1012……y=x2……41014y=x2+1…………y=x2y=x2+152125函数y

8、=x2+1的图象与y=x2的图象的位置有什么关系?函数y=x2+1的图象可由y=x2的图象沿y轴向上平移1个单位长度得到.操作与思考函数y=x2+1的图象与y=x2的图象的形状相同吗?相同x…..-2-1012……y=x2……41014y=x2-2…………y=x2y=x2-22-1-2-12函数y=x2-2的图象可由y=x2的图象沿y轴向下平移2个单位长度得到.函数y=x2-2的图象与y=x2的图象的位置有什么关系?操作与思考函数y=x2+1的图象与y=x2的图象的形状相同吗?相同函数y=ax2(a≠0)和函数y=ax2+c(a

9、≠0)的图象形状,只是位置不同;当c>0时,函数y=ax2+c的图象可由y=ax2的图象向平移个单位得到,当c〈0时,函数y=ax2+c的图象可由y=ax2的图象向平移个单位得到。y=-x2-2y=-x2+3y=-x2函数y=-x2-2的图象可由y=-x2的图象沿y轴向下平移2个单位长度得到.函数y=-x2+3的图象可由y=-x2的图象沿y轴向上平移3个单位长度得到.图象向上移还是向下移,移多少个单位长度,有什么规律吗?上加下减相同上c下

10、c

11、(1)函数y=4x2+5的图象可由y=4x2的图象向平移个单位得到;y=4x2-11的

12、图象可由y=4x2的图象向平移个单位得到。(3)将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是。将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是。(2)将函数y=-3x2+4的图象向平移个单位可得y=-3x2的图象;将y=2x2-7的图象向平移个单位得到可由y=2x2的图象。将y=x2-7的图象向平移个单位可得到y=x2+2的图象。上5下11下4上7上9y=4x2+3y=-5x2-4小试牛刀当a>0时,抛物线y=ax2+c的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y

13、随x的增大而,当x=时,取得最值,这个值等于;当a<0时,抛物线y=ax2+c的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于。y=-x2-2y=-x2+3y=-x2y=x2-2y=x2+1y=x2向上y轴(0,c)减小增大0小c向下y轴(0,c)增大减小0大c观察思(4)抛物线y=-3x2+5的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x的增大而,当x=时,取得最值,这个值等于。6.二次函数y=ax2+c(a≠0)

14、的图象经过点A(1,-1),B(2,5),则函数y=ax2+c的表达式为。若点C(-2,m),D(n,7)也在函数的图象上,则点C的坐标为点D的坐标为.(5)抛物线y=7x2-3的开口,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧,y随x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。