欢迎来到天天文库
浏览记录
ID:52015538
大小:297.50 KB
页数:20页
时间:2020-03-29
《直线和平面所成的角课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二课时直线和平面所成的角2.3.1直线与平面垂直的判定问题提出1.直线和平面垂直的定义和判定定理分别是什么?定义:如果一条直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线和平面所成的角2.当直线与平面相交时,对于直线与平面垂直的情形,我们已作了一些相关研究,对于直线与平面不垂直的情形,我们需要从理论上作些分析.知识探究(一):平面的斜线思考1:当直线与平面相交时,它们可能垂直,也可能不垂直,如果一条直线
2、和一个平面相交但不垂直,这条直线叫做这个平面的斜线,斜线和平面的交点叫做斜足.那么过一点作一个平面的斜线有多少条?αlP斜线斜足思考2:过斜线上斜足外一点向平面引垂线,连结垂足和斜足的直线叫做这条斜线在这个平面上的射影.那么斜线l在平面α内的射影有几条?αlPAB思考3:两条平行直线、相交直线、异面直线在同一个平面内的射影可能是哪些图形?思考4:如图,过平面α外一点P引平面α的两条斜线段PA、PB,斜足为A、B,再过点P引平面α的垂线,垂足为O,如果PA>PB,那么OA与OB的大小关系如何?反之成立吗
3、?αOPAB思考5:如图,过平面α内一点P引平面α的两条斜线PA、PB,这两条斜线段在平面α内的射影分别为PC、PD,如果PA>PB,那么PC与PD的大小关系确定吗?αCPABD思考6:如图,直线l是平面α的一条斜线,它在平面α内的射影为b,直线a在平面α内,如果a⊥b,那么直线a与直线l垂直吗?为什么?反之成立吗?aαlb知识探究(二):直线和平面所成的角思考1:平面的一条斜线与这个平面总存在一个相对倾斜度,我们设想用一个平面角来反映这个倾斜度,并且这个角的大小由斜线与平面的相对位置关系所确定,那么
4、角的顶点宜选在何处?αl思考2:如图,AB为平面α的一条斜线,A为斜足,AC为平面α内的任意一条直线,能否用∠BAC反映斜线AB与平面α的相对倾斜度?为什么?αCAB思考3:反映斜线与平面相对倾斜度的平面角的顶点为斜足,角的一边在斜线上,另一边在平面内的哪个位置最合适?为什么?αPAB思考4:我们把平面的一条斜线和它在平面上的射影所成的锐角,叫做这条斜线和这个平面所成的角.在实际应用或解题中,怎样去求这个角?αPAB思考5:特别地,当一条直线与平面垂直时,规定它们所成的角为90°;当一条直线和平面平行
5、或在平面内时,规定它们所成的角为0°.这样,任何一条直线和一个平面的相对倾斜度都可以用一个角来反映,那么直线与平面所成的角的取值范围是什么?思考6:如图,∠BAD为斜线AB与平面α所成的角,AC为平面α内的一条直线,那么∠BAD与∠BAC的大小关系如何?DαCAB∠BAC>∠BAD思考7:两条平行直线与同一个平面所成的角的大小关系如何?反之成立吗?一条直线与两个平行平面所成的角的大小关系如何?α思考8:过平面α外一点P引平面α的斜线,斜足为A,若斜线PA与平面α所成的角为50°,那么点A在平面α内的运
6、动轨迹是什么图形?PAOα理论迁移例1在正方体ABCD-A1B1C1D1中.(1)求直线A1B和平面ABCD所成的角;(2)求直线A1B和平面A1B1CD所成的角.D1ABA1CB1C1DO例2如图,AB为平面α的一条斜线,B为斜足,AO⊥平面α,垂足为O,直线BC在平面α内,已知∠ABC=60°,∠OBC=45°,求斜线AB和平面α所成的角.ABCOαD作业:P67练习:2.P74习题2.3A组:9.
此文档下载收益归作者所有