领略数学之美.doc

领略数学之美.doc

ID:51944883

大小:32.50 KB

页数:5页

时间:2020-03-20

领略数学之美.doc_第1页
领略数学之美.doc_第2页
领略数学之美.doc_第3页
领略数学之美.doc_第4页
领略数学之美.doc_第5页
资源描述:

《领略数学之美.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、领略数学之美众所周知,数学在我们的基础教育中占有很大的份量,是我们的文化中极为重要的组成部分。她不但有智育的功能,也有其美育的功能。数学美深深地感染着人们的心灵,激起人们对她的欣赏。下面从几个方面来欣赏数学美。一、简洁美爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:V-E+F=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都

2、必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?由她还可派生出许多同样美妙的东西。如:平面图的点数V、边数E、区域数F满足V-E+F=2,这个公式成了近代数学两个重要分支——拓扑学与图论的基本公式。由这个公式可以得到许多深刻的结论,对拓扑学与图论的发展起了很大的作用。数学的这种简洁美,用几个定理是不足以说清的,数学历史中每一次进步都使已有的定理更简洁。正如伟大的希而伯特曾说过:“数学中每一步真正的进展都与更有力的工具和更简单的方法的发现密切联系着”。二、和谐美数论大师赛尔伯格曾经说,他喜欢数学的一个动机是以下的公式:

3、,这个公式实在美极了,奇数1、3、5、…这样的组合可以给出5,对于一个数学家来说,此公式正如一幅美丽图画或风景。欧拉公式:,曾获得“最美的数学定理”称号。欧拉建立了在他那个时代,数学中最重要的几个常数之间的绝妙的有趣的联系,包容得如此协调、有序。与欧拉公式有关的棣美弗-欧拉公式是――(1)。这个公式把人们以为没有什么共同性的两大类函数――三角函数与指数函数紧密地结合起来了。对他们的结合,人们始则惊诧,继而赞叹――确是“天作之合”,因为,由他们的结合能派生出许多美的,有用的结论来。和谐的美,在数学中多得不可胜数。维纳斯的美被所有人所公认,她的身材比也恰恰是黄金分

4、割比。黄金分割比在许多艺术作品中、在建筑设计中都有广泛的应用。三、奇异、突变美全世界有很大影响的两份杂志曾联合邀请全世界的数学家们评选“近50年的最佳数学问题”,其中有一道相当简单的问题:有哪些分数,不合理地把b约去得到,结果却是对的?经过一种简单计算,可以找到四个分数:。这个问题涉及到“运算谬误,结果正确”的歪打正着,在给人惊喜之余,不也展现一种奇异美吗?人造卫星、行星、彗星等由于运动的速度的不同,它们的轨道可能是椭圆、双曲线或抛物线,这几种曲线的定义如下:到定点距离与它到定直线的距离之比是常数e的点的轨迹,当e<1时,形成的是椭圆.当e>1时,形成的是双曲

5、线.5当e=1时,形成的是抛物线.常数e由0.999变为1、变为0.001,相差很小,形成的却是形状、性质完全不同的曲线。而这几种曲线又完全可看作不同的平面截圆锥面所得到的截线。椭圆与正弦曲线会有什么联系吗?做一个实验,把厚纸卷几次,做成一个圆筒。斜割这一圆筒成两部分。如果不拆开圆筒,那么截面将是椭圆,如果拆开圆筒,切口形成的即是正弦曲线。这其中的玄妙是不是很奇异、很美。无序的混沌状态,通常以为不可用数学来研究。可从确定的现象(一个二次函数λx(1-x))通过迭代居然能产生出随机现象,也就是说无序的混沌状态,竟然可以从一个二次方程的迭代产生出来。这就把两种完全

6、不同类型的数学问题沟通起来了。这深刻的发现,使人不禁感叹大自然规律的神奇。就是数学的这种奇异美使神秘、严肃、程式化的数学世界充满了勃勃生机。四、对称美在古代“对称”一词的含义是“和谐”、“美观”。事实上,译自希腊语的这个词,原义是“在一些物品的布置时出现的般配与和谐”。毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称圆形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。对称美的形式很多,对称的这种美也不只是数学家独自欣赏的,人们对于对称美的追求是自然的、朴素的。如格点对称,十四世纪在西班牙的格拉

7、那达的阿尔汉姆拉宫,存在所有的格点对称,而1924年才证明出格点对称的种类。此外,还有格度对称,如我们喜爱的对数螺线、雪花,知道它的一部分,就可以知道它的全部。李政道、杨振宁也正是由对称的研究而发现了宇称不守恒定律。从中我们体会到了对称的美与成功。5五、创新美欧几里得几何曾经是完美的经典几何学,其中的公理5:“过直线外一点有且只有一条直线与已知直线平行”和结论“三角形内角和等于二直角”,这些似乎是天经地义的绝对真理。但罗马切夫斯基却采用了不同公理5的结论:“过直线外一点至少有两条直线与已知直线平行”,在这种几何里,“三角形内角和小于二直角”,从而创造了罗氏几何

8、。黎曼几何学没有平行线。这些与传统观念

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。