欢迎来到天天文库
浏览记录
ID:51942686
大小:360.69 KB
页数:21页
时间:2020-03-20
《FOURIER ANALYSIS傅立叶分析解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、FOURIERANALYSISLucasIlling2008Contents1FourierSeries21.1GeneralIntroduction........................21.2DiscontinuousFunctions......................51.3ComplexFourierSeries.......................72FourierTransform82.1Denition..............................82.2Theissueofconvention......
2、................112.3ConvolutionTheorem.......................122.4SpectralLeakage..........................133DiscreteTime173.1DiscreteTimeFourierTransform.................173.2DiscreteFourierTransform(andFFT)..............194ExecutiveSummary2011.FourierSeries1FourierSeries1.1General
3、IntroductionConsiderafunctionf()thatisperiodicwithperiodT.f(+T)=f()(1)Wemayalwaysrescaletomakethefunction2periodic.Todoso,deneanewindependentvariablet=2,sothatTf(t+2)=f(t)(2)Soletusconsiderthesetofallsucientlynicefunctionsf(t)ofarealvariabletthatareperiodic,withperiod2.Sinc
4、ethefunctionisperiodicweonlyneedtoconsideritsbehaviorononeintervaloflength2,e.g.ontheinterval( ;).Theideaistodecomposeanysuchfunctionf(t)intoaninnitesum,orseries,ofsimplerfunctions.FollowingJosephFourier(1768-1830)considertheinnitesumofsineandcosinefunctionsX1a0f(t)=+[ancos(nt)+b
5、nsin(nt)](3)2n=1wheretheconstantcoecientsanandbnarecalledtheFouriercoecientsoff.Therstquestiononewouldliketoanswerishowtondthosecoecients.Todosoweutilizetheorthogonalityofsineandcosinefunctions:ZZ1cos(nt)cos(mt)dt=[cos((m n)t)+cos((m+n)t)]dt 28><2;m=n=0=;m=n6=0>:0;m6=n(2;
6、m=n=0=(4)mn;m6=02GeneralIntroductionSimilarly,ZZ1sin(nt)sin(mt)dt=[cos((m n)t) cos((m+n)t)]dt 2(0m=0=(5)mnm6=0andZZ1sin(nt)cos(mt)dt=[sin((m n)t)+sin((m+n)t)]dt 2=0(6)UsingtheorthogonalityandtheassumedexpressionfortheinniteseriesgiveninEq.(3),itfollowsthattheFouriercoe
7、cientsareZ1an=f(t)cos(nt)dt(7) Z1bn=f(t)sin(nt)dt(8) ThisinitialinsightbyFourierwasfollowedbycenturiesofaworkonthesecondobviousquestion:AretheRHSandLHSinEq.(3)actuallythesame?ClearlyoneneedstodetermineforwhichclassoffunctionsftheinniteseriesontherighthandsideofEq.(3)willconverg
8、e.Tha
此文档下载收益归作者所有