FOURIER ANALYSIS傅立叶分析解析.pdf

FOURIER ANALYSIS傅立叶分析解析.pdf

ID:51942686

大小:360.69 KB

页数:21页

时间:2020-03-20

FOURIER ANALYSIS傅立叶分析解析.pdf_第1页
FOURIER ANALYSIS傅立叶分析解析.pdf_第2页
FOURIER ANALYSIS傅立叶分析解析.pdf_第3页
FOURIER ANALYSIS傅立叶分析解析.pdf_第4页
FOURIER ANALYSIS傅立叶分析解析.pdf_第5页
资源描述:

《FOURIER ANALYSIS傅立叶分析解析.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、FOURIERANALYSISLucasIlling2008Contents1FourierSeries21.1GeneralIntroduction........................21.2DiscontinuousFunctions......................51.3ComplexFourierSeries.......................72FourierTransform82.1De nition..............................82.2Theissueofconvention......

2、................112.3ConvolutionTheorem.......................122.4SpectralLeakage..........................133DiscreteTime173.1DiscreteTimeFourierTransform.................173.2DiscreteFourierTransform(andFFT)..............194ExecutiveSummary2011.FourierSeries1FourierSeries1.1General

3、IntroductionConsiderafunctionf()thatisperiodicwithperiodT.f(+T)=f()(1)Wemayalwaysrescaletomakethefunction2periodic.Todoso,de neanewindependentvariablet=2,sothatTf(t+2)=f(t)(2)Soletusconsiderthesetofallsucientlynicefunctionsf(t)ofarealvariabletthatareperiodic,withperiod2.Sinc

4、ethefunctionisperiodicweonlyneedtoconsideritsbehaviorononeintervaloflength2,e.g.ontheinterval(;).Theideaistodecomposeanysuchfunctionf(t)intoanin nitesum,orseries,ofsimplerfunctions.FollowingJosephFourier(1768-1830)considerthein nitesumofsineandcosinefunctionsX1a0f(t)=+[ancos(nt)+b

5、nsin(nt)](3)2n=1wheretheconstantcoecientsanandbnarecalledtheFouriercoecientsoff.The rstquestiononewouldliketoanswerishowto ndthosecoecients.Todosoweutilizetheorthogonalityofsineandcosinefunctions:ZZ1cos(nt)cos(mt)dt=[cos((mn)t)+cos((m+n)t)]dt28><2;m=n=0=;m=n6=0>:0;m6=n(2;

6、m=n=0=(4)mn;m6=02GeneralIntroductionSimilarly,ZZ1sin(nt)sin(mt)dt=[cos((mn)t)cos((m+n)t)]dt2(0m=0=(5)mnm6=0andZZ1sin(nt)cos(mt)dt=[sin((mn)t)+sin((m+n)t)]dt2=0(6)Usingtheorthogonalityandtheassumedexpressionforthein niteseriesgiveninEq.(3),itfollowsthattheFouriercoe

7、cientsareZ1an=f(t)cos(nt)dt(7)Z1bn=f(t)sin(nt)dt(8)ThisinitialinsightbyFourierwasfollowedbycenturiesofaworkonthesecondobviousquestion:AretheRHSandLHSinEq.(3)actuallythesame?Clearlyoneneedstodetermineforwhichclassoffunctionsfthein niteseriesontherighthandsideofEq.(3)willconverg

8、e.Tha

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。