人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc

人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc

ID:51894706

大小:73.50 KB

页数:3页

时间:2020-03-18

人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc_第1页
人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc_第2页
人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc_第3页
资源描述:

《人教版九年级数学下册26.2 实际问题与反比例函数-同步练习(1)B.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、§26.2实际问题与反比例函数(1)1.近视眼镜的度数y(度)与焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m.(1)试求眼镜度数y与镜片焦距x之间的函数关系式;(2)求1000度近视眼镜镜片的焦距.2.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;[来源:学优高考网gkstk](3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5000m3,那么水池中的水将要多少小时排完?[

2、来源:gkstk.Com]3.A、B两城市相距720千米,一列火车从A城去B城.(1)火车的速度v(千米/时)和行驶的时间t(时)之间的函数关系式是;(2)若到达目的地后,按原路匀速原回,要在3小时内回到A城,返回的速度不能低于千米/时.4.有一面积为60的梯形,上底长是下底长的,若下底长为x,高为y,则y与x的函数关系式是.5.(2005年,长沙)已知矩形的面积为10,则它的长y与宽x之间的关系用图象大致可表示为().6.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是().中考链接7.为了预防流行性感冒,某学校对教室采

3、用药熏消毒法进行消毒.已知,药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此室内空气中每立方米的含药量为6毫克,请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为,自变量的取值范围是;药物燃烧后y与x的函数关系式为;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过分钟后,学生才能回到教室;[来源:学优高考网gkstk](3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10

4、分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?§26.2实际问题与反比例函数(2)1.小伟想用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别是1200N和0.5m.(1)动力F和动力臂L有怎样的函数关系?当动力臂为1.5m时,撬动石头至少要多大的力?(2)若想使动力F不超过第(1)题中所用力的一半,则动力臂至少要加长多少?2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(m3)的反比例函数,其图象如图所示(千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球体积为0.8m3时,气球内的气压是

5、多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?X(元)3456Y(个)201512103.某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:(1)根据表中的数据在如图的平面直角坐标系中描出实数对(x,y)的对应点;(2)猜测并确定y与x之间的函数关系式,并画出图象;(3)设经营此贺卡的销售利润为w元,试求出w(元)与x(元)之间的函数关系式,若物价局规定此贺卡的销售价最高不能超过10元/个,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润

6、?最大日销售利润是多少?4.(2010年,北京市朝阳区模拟)函数与函数的图象交于A、B两点,设点A的坐标为,则边长分别为、的矩形面积为().A.4B.6C.8D.105.(2005年,荆州)在某一电路中,电流I、电压U、电阻R三者之间满足关系I=.(1)当哪个量一定时,另两个量成反比例函数关系?(2)若I和R之间的函数关系图象如图,则这一电路的电压是______伏.6.(2005年,扬州)已知力F对一个物体作的功是15焦,则力F与此物体在力的方向上移动的距离S之间的函数关系式的图象大致是().中考链接7.(2005年,四川)制作一种产品,需先将材料加热到达

7、60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图所示).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.[来源:gkstk.Com](1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;[来源:学优高考网](2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。