26.2 实际问题与反比例函数(1)

26.2 实际问题与反比例函数(1)

ID:38780956

大小:913.50 KB

页数:21页

时间:2019-06-19

26.2 实际问题与反比例函数(1)_第1页
26.2 实际问题与反比例函数(1)_第2页
26.2 实际问题与反比例函数(1)_第3页
26.2 实际问题与反比例函数(1)_第4页
26.2 实际问题与反比例函数(1)_第5页
资源描述:

《26.2 实际问题与反比例函数(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、26.2实际问题与反比例函数第1课时罗毅桑树坪学校你吃过拉面吗?你知道在做拉面的过程中渗透着数学知识吗?(1)体积为20cm3的面团做成拉面,面条的总长度y与面条粗细(横截面积)s有怎样的函数关系?(2)某家面馆的师傅手艺精湛,他拉的面条粗1mm2,面条总长是多少?创设情景明确目标1.利用反比例函数的知识分析、解决实际问题.2.渗透数形结合思想,提高学生用函数观点解决问题的能力.学习目标活动1:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?学.科.

2、网(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?探究点一:用反比例函数解决面积、体积、容积类问题合作探究达成目标解:(1)根据圆柱体的体积公式,我们有s×d=变形得即储存室的底面积S是其深度d的反比例函数.市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?把S=500代入,得解得d=

3、20如果把储存室的底面积定为500²,施工时应向地下掘进20m深.(2)公司决定把储存室的底面积S定为500m²,施工队施工时应该向下掘进多深?学.科组卷网.网解:根据题意,把d=15代入,得解得S≈666.67当储存室的深为15m时,储存室的底面积应改为666.67才能满足需要.(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,储存室的底面积应改为多少才能满足需要(保留两位小数)?组卷网解:合作探究达成目标小组讨论1:圆柱体的体积公式是什么?第(2)问和第(3)问与过去所学的解分式方程和求代数式的值的

4、问题有何联系?【反思小结】(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式.(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反.【针对练一】我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:;函数关系式:.解:本题通过范

5、例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写为(s为常数,s≠0).活动2:码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?根据装货速度×装货时间=货物的总量,可以求出轮船装载货物的总量;再根据卸

6、货速度=货物的总量÷卸货时间,得到v与t的函数式。分析合作探究达成目标探究点二:用反比例函数解决工程问题解:(1)设轮船上的货物总量为k吨,则根据已知条件有k=30×8=240所以v与t的函数式为(2)把t=5代入,得结果可以看出,如果全部货物恰好用5天卸完,则平均每天卸载48吨.若货物在不超过5天内卸完,则平均每天至少要卸货48吨.合作探究达成目标小组讨论2:题目中蕴含的等量关系是什么?我们知道“至少”对应于不等号“≥”,那么需要用不等式来解决第(2)问吗?请看教材是如何解决这个问题的,说说看.【反思小结】此题类似应用题中的“工程问题”

7、,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系.(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少.【针对练二】2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式.3.学校锅炉旁建有一个储煤库,开学时购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天.(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若

8、每天节约0.1吨,则这批煤能维持多少天?解:(1)煤的总量为:0.6×150=90吨,∵x•y=90,∴y=.(2)函数的图象为:(3)∵每天节约0.1吨煤,∴每天的用煤量为0.6-0.1=0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。