资源描述:
《求解应急设施的位置问题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、求解应急设施的位置问题一.问题的提出美国的里奥兰翘(RioRancho)镇迄今还没有自己的应急设施,1986年该镇得到了建立两个应急设施的拨款,每个设施祁把救护站、消防队和警察局合在一•起,如图指出了1985年每个长方形街区发生应急事件的次数,在北边的L形区域是一障碍,而在南边长方形区域内有一个浅水塘的公园。应急车辆驶过一条南北方向的街道平均耍花15s,而通过一条东西方向的街道平均花20so你的任务是确定这两个应急设施的位置,使得总响应时间最少。(I)假定应急需求集中在每个街区的屮心,而应急设施位于街角处。(II)假定应急需求是沿包每个街区的街道上均匀分布,
2、而应急设施可以位于街道任何地方。二.模型的分析和假设1)两个障碍区域中均不需要应急服务;2)每年的应急事件数冃比较小,可以认为在同一街区不会同时发生两个事件;3)忽略车辆转弯和过十字路口的时间,仅考虑沿街道行驶的吋间;4)两个设施的功能相同,当应急事件发生时,指挥中心总是从离事件发生地最近的应急设施派岀应急车俩;5)1985年的各街区的应急事件数是真实的,未來的需求分布不会与现在的需求相差太远;6)当连接两点的不同路径所用时间相同时,路径可以任选其一。三•模型的建立和求解符号说明:(XI,Y1)应急设施的一个位置(X2,Y2)应急设施的第二个位置(X,Y)发
3、生应急事件的位置W(X,Y)在(X,Y)发生应急事件的次数Tl,T2两个应急设施到达应急事件地点所花费的时间TM最小响应时间TOT到任意街区最邻近的街角所需时间T为总响应时间t为平均响应时间模型I:除了上而假设以外,假设在没有障碍的街区应急事件均发生在街区屮心,而M急设施的位置设在某街区的街角上。应急车辆做出响应的时间最短是指到达事件放生地的时间;这样可能的两个应急点数只有有限个,因此,只需检验每一对位置点对所有街区发生事件做出的响应时间,选择平均每一次事件响应时间最小的那两个点建立坐标系,左下角(西南角)为原点(0,0),东西为x轴,南北为y轴。1)一个位
4、置点对某一街区发生时间的响应时间二位置点到街区数X车辆行驶一条街道的时间X该街区发生事件的次数;2)一个位置点对全镇所有应急事件的总响应时间总和二该位置点对所有街区的应急事件响应时间的总和;3)一个位置点对全镇所有应急事件的平均响应时间二总响应时间/事件的总数;4)取使平均响应时间最小的那个对应的位置点为应急设施的位置。两个设施到任一街区(X,Y)(距原点最近的街角坐标)的时间计算公式为:T1=X1?(X+0.5)x20+Y1?(Y+0.5)x15?17.5T2=X2?(X+0.5)x20+Y2?(Y+0.5)xl5?17.5贝I」,TM=min(T1,T2
5、);TOT=TMxW(X,Y);TU2TOT;HT二09・Matsrb弗引&HTOH3000;w"391o942-3oooao2o9392;12oj93;2・3a.40八394939395-5009391八2093932八3293932-39194251八fora==99forb==94forCHOCford==p4Tupforeu99forIT94TOTUPTluabs(a(+0.5))£5+abs(b—(f+0.5)r20—17.5;T2U自(2C+0.5))芒5+abs(CL(f+0.5)r20—17.5;TMUms-(TlH2);TOTUTMrw(c
6、+lJ+l);TUT+TOT-endendif(T<TO)TO=T;Yl=a;Xl=b;Y2=c;X2=d;endendendendend得到TO=3215s,两个位置为(3,4)(3,8)・、t=3215/109=29.495s.模型II:除了前面的假设以外,假设每个街区的应急事件却发生点在街道上,而且均匀分布,两个设施还是设在街角上。每一个长方形街区四周的每一条街道上发生事件的次数=该长方形街区事件数的;因此每一条街道上发生事件的次数二两个相邻街区事件数的Z和。贝I」:1414Tl=Xl?Xx20+Yl?Y)xl5,T2=X2?Xx20+Y2?Y)
7、xl5,TM=min(T1,T2),1TOTx=TMx[W(X?0.5,Y)+W(X?0.5,Y?1)],41TOTy=TMx[W(X,Y?0・5)+W(X?l,Y?0・5)],4T=£TOT,t=T/109.Matlab程序如下:T0=10000;W=[0,0,0,0,0,0,0,0,0,0,0,0;0,3,l,0,4,2,3,0,0,0,4,0;0,0,2,0,3,2,1,2,0,1,3,0;0,2,3,4,4,0,3,4,3,3,5,0;0,5,0,0,3,l,2,0,3,3,2,0;0,3,2,3,3,2,3,l,4,2,5,0;0,0,0,0,0,
8、0,0,0,0,0,0,0];fora=0:9for