欢迎来到天天文库
浏览记录
ID:51666524
大小:1.22 MB
页数:41页
时间:2020-03-28
《中考数学总复习28 圆地有关性质(41张)教学教案.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第28课时 圆的有关性质第29课时 与圆有关的位置关系第30课时 切线的性质和判定第31课时 与圆有关的计算第六单元 圆第六单元 圆第28课时 圆的有关性质考点聚焦考点聚焦归类探究归类探究回归教材回归教材第28课时┃考点聚焦考点聚焦考点1圆的有关概念考点聚焦归类探究回归教材圆的定义定义1:把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆,其中,定点O叫做圆心,线段OP叫做半径定义2:圆是平面内到定点的距离等于定长的点的集合弦连接圆上任意两点的________叫做弦直径经过圆心的
2、弦叫做直径弧圆上任意两点间的部分叫做弧优弧大于半圆的弧叫做优弧劣弧小于半圆的弧叫做劣弧线段第28课时┃考点聚焦考点2确定圆的条件及相关概念确定圆的条件不在同一直线上的三个点确定一个圆三角形的外心三角形三边的________________的交点,即三角形外接圆的圆心防错提醒锐角三角形的外心在三角形的内部,直角三角形的外心在直角三角形的斜边上,钝角三角形的外心在三角形的外部考点3圆的对称性圆既是一个轴对称图形又是一个________对称图形,圆还具有旋转不变性.垂直平分线中心考点聚焦归类探究回归教材第28课时┃考点聚焦考点4垂径
3、定理及其推论垂径定理垂直于弦的直径_________,并且平分弦所对的两条弧推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧总结对于①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧,这五条结论中的任意两条成立,那么其他的结论也成立平分弦考点聚焦归类探究回归教材第28课时┃考点聚焦考点5圆心角、弧、弦之间的关系定理在同圆或等圆中,相等的圆心角所对的______相等,所
4、对的______相等推论在同圆或等圆中,如果两个圆心角﹑两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等弧弦考点聚焦归类探究回归教材第28课时┃考点聚焦考点6圆周角圆周角定义顶点在圆上,并且两边都和圆相交的角叫做圆周角圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角________,都等于该弧所对的圆心角的________推论1在同圆或等圆中,相等的圆周角所对的弧______推论2半圆(或直径)所对的圆周角是______;90°的圆周角所对的弦是______推论3如果三角形一边上的中线等于这边的一半,那么这个
5、三角形是________三角形相等一半相等直角直径直角考点聚焦归类探究回归教材第28课时┃考点聚焦考点7反证法定义不直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种方法叫做反证法步骤(1)假设命题的结论不正确,即提出与命题结论相反的假设;(2)从假设的结论出发,推出矛盾;(3)由矛盾的结果说明假设不成立,从而肯定原命题的结论正确考点聚焦归类探究回归教材命题角度:1.确定圆的圆心、半径;2.三角形的外接圆圆心的性质.探究一、确定圆的条件归类探究第28课时
6、┃归类探究例1.[2012•资阳]直角三角形的两边长分别为16和12,则此三角形的外接圆半径是________.10或8考点聚焦归类探究回归教材第28课时┃归类探究解析考点聚焦归类探究回归教材第28课时┃归类探究方法点析(1)过不在同一条直线上的三个点作圆时,只需由两条线段的垂直平分线确定圆心即可,没有必要作出第三条线段的垂直平分线.事实上,三条垂直平分线交于同一点.(2)直角三角形的外接圆是以斜边为直径的圆.考点聚焦归类探究回归教材命题角度:1.垂径定理的应用;2.垂径定理的推论的应用.探究二、垂径定理及其推论第28课时┃归
7、类探究例2.[2013•上海]在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为________.考点聚焦归类探究回归教材第28课时┃归类探究解析方法点析垂径定理及其推论是证明两线段相等,两条弧相等及两直线垂直的重要依据之一,在有关弦长、弦心距的计算中常常需要作垂直于弦的线段,构造直角三角形.考点聚焦归类探究回归教材命题角度:在同圆或等圆中,圆心角、弧、弦之间的关系.探究三、圆心角、弧、弦之间的关系第28课时┃归类探究例3.如图28-1,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于
8、点E,连接BD、CD.(1)求证:BD=CD;(2)请判断B、E、C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.图28-1考点聚焦归类探究回归教材第28课时┃归类探究解析(1)根据垂径定理和同圆或等圆中等弧对等弦证明;(2)利用同弧所对的圆周角相等和等腰三角形的判定
此文档下载收益归作者所有