资源描述:
《人教高中课标必修二2.3.4平面与平面垂直的性质.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.4平面与平面垂直的性质【教学目标】(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;(2)能运用性质定理证明一些空间位置关系的简单命题,进一步培养学生空间观念.(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握等价转化思想在解决问题中的运用.【教学重难点】重点:理解掌握面面垂直的性质定理和内容和推导。难点:运用性质定理解决实际问题。【教学过程】(一)复习提问1.线面垂直判定定理:如果一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.2.面面垂直判定定理:如果一个平面
2、经过另一个平面的一条垂线,则这两个平面互相垂直.(二)引入新课已知黑板面与地面垂直,你能在黑板面内找到一条直线与地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!(三)探求新知已知:面α⊥面β,α∩β=a,ABα,AB⊥a于B,求证:AB⊥β(让学生思考怎样证明)分析:要证明直线垂直于平面,须证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作辅助线.证明:在平面β内过B作BE⊥a,又∵AB⊥a,∴∠ABE为α﹣a﹣β的二面角,又∵α⊥β,∴∠ABE=90°,∴AB⊥BE又∵AB⊥a,BE∩a=B,∴AB⊥β面面
3、垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(用符号语言表述)若α⊥β,α∩β=a,ABα,AB⊥a于B,则AB⊥β师:从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明。这种互相转换的证明方法是常用的数学思想方法。同学们在学习中要认真理解和体会。(四)拓展应用例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.例2.如图,已知平面α、β,α⊥β,α∩β=AB,直线a⊥β,aα,试判断直线a与平面α的位
4、置关系(求证:a∥α)(引导学生思考)分析:因为直线与平面有在平面内、相交、平行三种关系)解:在α内作垂直于α、β交线AB的直线b,∵α⊥β∴b⊥β∵a⊥β∴a∥b,又∵aα∴a∥α课堂练习:练习第1、2题A组第1题(四)当堂检测1.如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。(1)平面ADD′A′⊥平面ABCD(2)DD′⊥面ABCD(3)AD′⊥面ABCD2.空间四边形ABCD中,ΔABD与ΔBCD都为正三角形,面ABD⊥面BCD,试在平面BCD内找一点,使AE⊥面BCD,亲说明理由参考答案2解:在ΔABD中,∵AB
5、=AD,取BD的中点E,连结AE,则AE为BD的中线∴AE⊥BD又∵面BCD∩面ABD=BD,面ABD⊥面BCD∴AE⊥面BCD(五)课堂小结1.面面垂直判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.2.面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.②利用性质定理解决问题【板书设计】一、平面与平面垂直的性质定理二、三种形式表达三、性质定理的应用【作业布置】课后练习与提高2.3.4平面与平面垂直的性质课前预习导学案一、预习目标(1)明确平面与平面垂直的判定定理。(2)直线与平面垂直的性
6、质定理二、预习内容1、平面与平面垂直的判定定理2、直线与平面垂直的性质定理3、思考题:(1)黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?(2)在长方体中,平面与平面垂直,直线垂直于其交线。平面内的直线与平面垂直吗?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标(1)探究平面与平面垂直的性质定理(2)应用平面与平面垂直的性质定理解决问题学习重点:理解掌握面面垂直的性质定理和内容和推导。学习难点:运用性质定理解决实际问题。二、学习过程探究一已知:面α⊥面β
7、,α∩β=a,ABα,AB⊥a于B,求证:AB⊥β(让学生思考怎样证明,小组间可以相互讨论)由证明结果的平面与平面垂直的性质定理(三种形式的表达)探究二、性质的应用例1.求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.证明(略)变式练习第1题例2.如图,已知平面α、β,α⊥β,α∩β=AB,直线a⊥β,aα,试判断直线a与平面α的位置关系(求证:a∥α)(引导学生思考)解:(略)变式练习2题(略)A组第1题(略)当堂检测1.如图,长方体ABCD﹣A′B′C′D′中,判断下面结论的正误。(1)平
8、面ADD′A′⊥平面ABCD(2)DD′⊥面ABCD(3)AD′⊥面ABCD2.空间四边形ABCD中,ΔABD与ΔBCD都为正三角形,面ABD⊥面BCD,试在平面BCD内找一点,使AE⊥面BC