直线参数方程t的几何意义06290.doc

直线参数方程t的几何意义06290.doc

ID:51332034

大小:279.65 KB

页数:4页

时间:2020-03-10

直线参数方程t的几何意义06290.doc_第1页
直线参数方程t的几何意义06290.doc_第2页
直线参数方程t的几何意义06290.doc_第3页
直线参数方程t的几何意义06290.doc_第4页
资源描述:

《直线参数方程t的几何意义06290.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、利用直线参数方程t的几何意义1、直线参数方程的标准式(1)过点P0(),倾斜角为的直线的参数方程是(t为参数)t的几何意义:t表示有向线段的数量,P()P0P=t∣P0P∣=t为直线上任意一点.(2)若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2=t2-t1∣P1P2∣=∣t2-t1∣(3)若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3则P1P2中点P3的参数为t3=,∣P0P3∣=(4)若P0为P1P2的中点,则t1+t2=0,t1·t2<02、直线参数方程的一般式过点P

2、0(),斜率为的直线的参数方程是(t为参数)点击直线参数方程:yh0hP0hP()Q一、直线的参数方程问题1:(直线由点和方向确定)求经过点P0(),倾斜角为的直线的参数方程.设点P()是直线上任意一点,(规定向上的方向为直线L的正方向)过点P作y轴的平行线,过P0作x轴的平行线,两条直线相交于Q点.1)当与直线同方向或P0和P重合时,yh0hP()P0hQP0P=

3、P0P

4、则P0Q=P0PcosQP=P0Psin2)当与直线反方向时,P0P、P0Q、QP同时改变符号P0P=-

5、P0P

6、P0Q=P0PcosQP=

7、P0Psin仍成立设P0P=t,t为参数,又∵P0Q=,=tcosQP=∴=tsin即是所求的直线的参数方程∵P0P=t,t为参数,t的几何意义是:有向直线上从已知点P0()到点P()的有向线段的数量,且

8、P0P

9、=

10、t

11、①当t>0时,点P在点P0的上方;②当t=0时,点P与点P0重合;③当t<0时,点P在点P0的下方;yh0hP0hP()特别地,若直线的倾斜角=0时,直线的参数方程为①当t>0时,点P在点P0的右侧;②当t=0时,点P与点P0重合;yh0hPP0h③当t<0时,点P在点P0的左侧;问题2:直线上

12、的点与对应的参数t是不是一对应关系?我们把直线看作是实数轴,以直线向上的方向为正方向,以定点P0为原点,以原坐标系的单位长为单位长,这样参数t便和这条实数轴上的点P建立了一一对应关系.问题3:P1、P2为直线上两点所对应的参数分别为t1、t2,则P1P2=?,∣P1P2∣=?P1P2=P1P0+P0P2=-t1+t2=t2-t1,∣P1P2∣=∣t2-t1∣问题yh0hP1P0hP24:若P0为直线上两点P1、P2的中点,P1、P2所对应的参数分别为t1、t2,则t1、t2之间有何关系?根据直线参数方程t的几何意

13、义,P1P=t1,P2P=t2,∵P0为直线上两点P1、P2的中点,∴

14、P1P

15、=

16、P2P

17、P1P=-P2P,即t1=-t2,t1t2<0一般地,若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,P3为P1、P2的中点则t3=(∵P1P3=-P2P3,根据直线参数方程t的几何意义,∴P1P3=t3-t1,P2P3=t3-t2,∴t3-t1=-(t3-t2,))性质一:A、B两点之间的距离为,特别地,A、B两点到的距离分别为性质二:A、B两点的中点所对应的参数为,若是线段AB的中点,则,反之亦然。

18、在解题时若能运用参数t的上述性质,则可起到事半功倍的效果。应用一:求距离例1、直线过点,倾斜角为,且与圆相交于A、B两点。(1)求弦长AB.(2)求和的长。解:因为直线过点,倾斜角为,所以直线的参数方程为,即,(t为参数),代入圆方程,得,整理得(1)设A、B所对应的参数分别为,所以,,所以(2)解方程得,,所以,应用二:求点的坐标例2、直线过点,倾斜角为,求出直线上与点相距为4的点的坐标。解:因为直线过点,倾斜角为,所以直线的参数方程为,即,(t为参数),(1)设直线上与已知点相距为4的点为M点,且M点对应的参

19、数为t,则,所以,将t的值代入(1)式,当t=4时,M点的坐标为;当t=-4时,M点的坐标为,综上,所求M点的坐标为或.点评:若使用直线的普通方程,利用两点间的距离公式求M点的坐标较麻烦,而使用直线的参数方程,充分利用参数t的几何意义求M点的坐标较容易。应用三:解决有关弦的中点问题例3、过点,倾斜角为的直线和抛物线相交于A、B两点,求线段AB的中点M点的坐标。解:直线过点,倾斜角为,所以直线的参数方程为,(t为参数),因为直线和抛物线相交,将直线的参数方程代入抛物线方程中,得:,整理得,,设这个二次方程的两个根为

20、,由韦达定理得,由M为线段AB的中点,根据t的几何意义,得,易知中点M所对应的参数为,将此值代入直线的参数方程得,M点的坐标为(2,1)点评:对于上述直线的参数方程,A、B两点对应的参数为,则它们的中点所对应的参数为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。