欢迎来到天天文库
浏览记录
ID:51320869
大小:1.49 MB
页数:19页
时间:2020-03-10
《2018-2019学年天津市六校(静海一中、宝坻一中、杨村一中等)高二下学期期末考试数学试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018-2019学年天津市六校(静海一中、宝坻一中、杨村一中等)高二下学期期末考试数学试题一、单选题1.已知集合,,则()A.B.C.D.【答案】D【解析】先化简集合,再由交集的概念,即可得出结果.【详解】因为,,所以.故选:D.【点睛】本题主要考查求集合的交集,熟记交集的概念即可,属于基础题型.2.给出下列说法:(1)命题“,”的否定形式是“,”;(2)已知,则;(3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;(5)若将一组样本数据中的每个数据都加上同一个常数后,则样
2、本的方差不变.其中正确说法的个数为()A.2B.3C.4D.5【答案】B【解析】根据含有一个量词的命题的否定,直接判断(1)错;根据正态分布的特征,直接判断(2)对;根据线性回归方程的特点,判断(3)正确;根据独立性检验的基本思想,可判断(4)错;根据方差的特征,可判断(5)正确.第19页共19页【详解】(1)命题“,”的否定形式是“,”,故(1)错;(2)因为,即服从正态分布,均值为,所以;故(2)正确;(3)因为回归直线必过样本中心,又已知回归直线的斜率的估计值是2,样本点的中心为,所以,即所求回归直线方程为:;故(3)正确;(4)对分类变量与的随机变量的观测值来说
3、,越小,判断“与有关系”的把握越大;故(4)错;(5)若将一组样本数据中的每个数据都加上同一个常数后,方差不变.故(5)错.故选:B.【点睛】本题主要考查命题真假的判定,熟记相关知识点即可,属于基础题型.3.设是公比为的等比数列,则“对任意成立”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【解析】根据等比数列的通项公式,由充分条件与必要条件的概念,即可判断出结果.【详解】因为是公比为的等比数列,若对任意成立,则对任意成立,若,则;若,则;所以由“对任意成立”不能推出“”;若,,则,即;所以由“”不能推出“对任意成
4、立”;因此,“对任意成立”是“”的既不充分也不必要条件.故选:D.【点睛】本题主要考查既不充分也不必要条件的判断,熟记概念即可,属于基础题型.第19页共19页4.在的二项展开式中,二项式系数的最大值为,含项的系数为,则()A.B.C.D.【答案】B【解析】由题意,先写出二项展开式的通项,由此得出二项式系数的最大值,以及含项的系数,进而可求出结果.【详解】因为的二项展开式的通项为:,因此二项式系数的最大值为:,令得,所以,含项的系数为,因此.故选:B.【点睛】本题主要考查求二项式系数的最大值,以及求指定项的系数,熟记二项式定理即可,属于常考题型.5.已知定义在R上的偶函数
5、(其中e为自然对数的底数),记,,,则a,b,c的大小关系是()A.B.C.D.【答案】A【解析】先根据函数奇偶性,求出,得到,再由指数函数单调性,以及余弦函数单调性,得到在上单调递增,进而可得出结果.【详解】因为是定义在R上的偶函数,所以,即,即,所以,解得:,所以,第19页共19页当时,,因为是单调递增函数,在上单调递减,所以在上单调递增,又,所以,即.故选:A.【点睛】本题主要考查由函数单调比较大小,由函数奇偶性求参数,熟记函数单调性与奇偶性即可,属于常考题型.6.某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、
6、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为()A.720B.520C.600D.264【答案】D【解析】根据题意,分别讨论:甲、乙两节目只有一个参加,甲、乙两节目都参加,两种情况,分别计算,再求和,即可得出结果.【详解】若甲、乙两节目只有一个参加,则演出顺序的种数为:,若甲、乙两节目都参加,则演出顺序的种数为:;因此不同的演出顺序的种数为.故选:D.【点睛】本题主要考查有限制的排列问题,以及计数原理的简单应用,熟记计数原理的概念,以及有限制的排列问题的计算方法即可,属于常考题型.7.函数的所有零点的积为m,则有( )A.B.C.D.【答案】B【解析
7、】作函数y=e-x与y=
8、log2x
9、的图象,设两个交点的坐标为(x1,y1),(x2,y2)(不妨设x1<x2),得到0<x1<1<x2<2,运用对数的运算性质可得m的范围.第19页共19页【详解】令f(x)=0,即e-x=
10、log2x
11、,作函数y=e-x与y=
12、log2x
13、的图象,设两个交点的坐标为(x1,y1),(x2,y2)(不妨设x1<x2),结合图象可知,0<x1<1<x2<2,即有e-x1=-log2x1,①e-x2=log2x2,②由-x1>-x2,②-①可得log2x2+log2x1<0,即有0<x1x2<1,即m∈(0
此文档下载收益归作者所有