高考数学复习-空间几何体的表面积和体积基础(2).doc

高考数学复习-空间几何体的表面积和体积基础(2).doc

ID:51222537

大小:740.50 KB

页数:7页

时间:2020-03-20

高考数学复习-空间几何体的表面积和体积基础(2).doc_第1页
高考数学复习-空间几何体的表面积和体积基础(2).doc_第2页
高考数学复习-空间几何体的表面积和体积基础(2).doc_第3页
高考数学复习-空间几何体的表面积和体积基础(2).doc_第4页
高考数学复习-空间几何体的表面积和体积基础(2).doc_第5页
资源描述:

《高考数学复习-空间几何体的表面积和体积基础(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积.【要点梳理】【高清课堂:空间几何体的表面积和体积395219空间几何体的表面积】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之

2、和。计算时要分清面的形状,准确算出每个面的面积再求和。棱柱、棱锥、棱台底面与侧面的形状如下表:项目名称底面侧面棱柱平面多边形平行四边形面积=底·高棱锥平面多边形三角形面积=·底·高棱台平面多边形梯形面积=·(上底+下底)·高要点诠释:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,

3、圆柱的底面半径为r,母线长,那么这个矩形的长等于圆柱底面周长C=2πr,宽等于圆柱侧面的母线长(也是高),由此可得S圆柱侧=C=2πr.(2)圆柱的表面:.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r,母线长为,那么这个扇形的弧长等于圆锥底面周长C=πr,半径等于圆锥侧面的母线长为,由此可得它的侧面积是.(2)圆锥的表面积:S圆锥表=πr2+πr.3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r'、r,母线长为,那么这个

4、扇环的面积为π(r'+r),即圆台的侧面积为S圆台侧=π(r'+r).(2)圆台的表面积:.要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.【高清课堂:空间几何体的表面积和体积395219空间几何体的体积】要点三、柱体、锥体、台体的体积1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S和高h的乘积,即V棱柱=Sh.圆柱的体积:底面半径是r,高是h的圆柱的体积是V圆柱=Sh=πr2

5、h.综上,柱体的体积公式为V=Sh.2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S,高是h,那么它的体积.圆锥的体积:如果圆锥的底面积是S,高是h,那么它的体积;如果底面积半径是r,用πr2表示S,则.综上,锥体的体积公式为.3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S'、S,高是h,那么它的体积是.圆台的体积:如果圆台的上、下底面半径分别是r'、r,高是h,那么它的体积是.综上,台体的体积公式为.4.柱体、锥体、台体的体积公式之间的关系如下图所示.【高清课堂:空间几何体的表面积和体积395219球的体积与表面积】要

6、点四、球的表面积和体积1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积.(2)球的表面积设球的半径为R,则球的表面积公式S球=4πR2.即球面面积等于它的大圆面积的四倍.2.球的体积设球的半径为R,它的体积只与半径R有关,是以R为自变量的函数.球的体积公式为.要点五、侧面积与体积的计算1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何

7、体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S棱柱侧=C直截(其中C直截、分别为棱柱的直截面周长

8、与侧棱长),V棱柱=S直截(其中S直截、分别为棱柱的直截面面积与侧棱长).2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。