资源描述:
《一类三阶变系数非线性偏微分方程Backlund变换的分类.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、目录中文摘要..⋯⋯⋯⋯.......⋯..⋯⋯.⋯⋯⋯⋯⋯⋯⋯.1英文摘要⋯⋯⋯..⋯..⋯⋯⋯.⋯⋯⋯⋯..⋯⋯⋯⋯⋯21引言.⋯⋯⋯⋯⋯⋯....⋯..⋯.⋯⋯⋯⋯⋯⋯⋯⋯.42预备知识⋯.⋯⋯⋯.⋯...⋯.⋯⋯....⋯⋯⋯......⋯..73Backlund变换的分类..⋯.⋯⋯“⋯⋯⋯⋯...⋯⋯⋯⋯.104Backlund变换的应用⋯⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯⋯16参考文献⋯..⋯⋯⋯....⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯.....19致谢⋯..⋯⋯⋯.⋯...⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯⋯..
2、21中文摘要本文研究形如材。=F(x,r,U,甜,,U,)的三阶变系数非线性偏微分方程由形如f叱=国(x,,,v)+甜【v,=o(x,,,1,,U,”,,材曩)的可积系统定义的B£icklund变换的分类问题,分两种情形来讨论.1.当∞关于v是线性函数时,本文给出了完全分类,此时F、彩和@的具体形式为F(x,t,%蚝,ut)=P(X,t,功+拈f'姚+,似,,蜓+J@,,谢+酏r,砒co(x,f,1,)=q(x,f)1,。c枷幽%¨趣x,t,v,u川詈+多儿+磐”2西1“。其中s(五,,Ⅳ):fQ2(
3、x,t,u)一鱼幽一~Q2(x,,,U)2Q(x,f,”)以,,,炉三c等+挚黼删M∽卅(n加g(,))V+珐(奸+警飞+毪竽-g)咖p(x,t,甜)=Q(国l,+缈l否一否,一(col’,+材)否,)q(x,t,甜),烈X,t,材),O)I(X,f),幺(x,,)以及g(f)均为相关变量的任意光滑函数.作为应用,我们利用U一方程的一些特解,通过求解可积系统而生成相应’,一方程的解.2.当缈关于v不是线性函数时,本文对于可积系统不显含自变量x和r的情形证明了函数F也与x和,无关,再由文[14】的结论,
4、此时方程等价于MKdV或负MKdV方程.关键词:可积系统:Biieklund变换扬州大学硕士学位论文Abstract2一Inthispaper,weclassifythree-ordernonlinearpartialdifferentialequationswithvariablecoefficientsofthe甜埘=F(x,,,11,U,,11f)whichadmitBlicklundtransformationsdefinedviaintegrablesystemsofformOurdiscu
5、ssionisdividedintotwoparts.1.Forthecasethat缈islinearin1,,weclassifycompletelybotllthepartialdifferentialequationsandtheirassociatedintegrablesystems,andthefunctionsF、缈andOalegivenF(x,t,%z‘,ut)=P(X,t,印+g似f,巧比+,.伍,,∥域+“岛,,甜域+Q(x,t,u)ut缈(x,,,1,)=q@,t)v。(枷以
6、%㈦域x,t,v,u)+(詈号儿+参”2虿1“。s(x,r,甜)=Q0(x,,,“)Q。(x,,,“)Q2(x,t,“)2Q(x,,,“)如,,,加兰学+华西(x,f,V,“)=B(x,,)+(n,出+g(r))y+廖咖等飞+挚p(x,厶甜)=Q(rol,+功lO—O,一(缈l’,+u)O,)-q)duandq(x,,,11),Q(x,f,甜),q(石,,),B(x,f)andg(f)arearbitrarysmoothfunctionsintheircorresspondingvariables.A
7、sapplications,fromagivensolutionof”·equation,bysolvingtheassociatedintegrablesystem,wegeneratesomesQlutionsofthecorrespondingv-equations.盯甜”蚝卅蚺L五墨烈吼=匕H,●●●f●【2.Forthecasethat缈isnonlinearinV,weprove,whentheintegrablesystemsdon’tdependexplicitlyonthevaria
8、blesxandf,thatthenonlinearpartialdifferentialequationsareindependofthevariablesXandteither.Therefore,byaresultin【14],thepartialdifferentialequationsconsideredareequivalenttotheMKdVornegativeMKdVequations.Keywords:Integrablesystem