全等三角形中的倍长中线与截长补短法.ppt

全等三角形中的倍长中线与截长补短法.ppt

ID:51118335

大小:1.47 MB

页数:22页

时间:2020-03-18

全等三角形中的倍长中线与截长补短法.ppt_第1页
全等三角形中的倍长中线与截长补短法.ppt_第2页
全等三角形中的倍长中线与截长补短法.ppt_第3页
全等三角形中的倍长中线与截长补短法.ppt_第4页
全等三角形中的倍长中线与截长补短法.ppt_第5页
资源描述:

《全等三角形中的倍长中线与截长补短法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、倍长中线与截长补短法辅助线一般作法三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。例1:△ABC中,AB=5,AC=3,求中线AD的取值范围提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE方法1:过D作DG∥AE交BC于G,方法2:过E作EG∥A

2、B交BC的延长线于G,方法3:过D作DG⊥BC于G,过E作EH⊥BC的延长线于H例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF提示:倍长AD至G,连接BG,证明ΔBDG≌ΔCDA三角形BEG是等腰三角形例4:已知:如图,在中,,D、E在BC上,且DE=EC,过D作交AE于点F,DF=AC.求证:AE平分∠BAC提示:方法1:倍长AE至G,连结DG方法2:倍长FE至H,连结CH在三角形中线时,常廷长加倍中线,构造全等三角形。例如:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD分析:要证AB+AC>2AD

3、,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去证明:延长AD至E,使DE=AD,连接BE,CE∵AD为△ABC的中线(已知)∴BD=CD(中线定义)在△ACD和△EBD中BD=CD(已证)∠1=∠2(对顶角相等)AD=ED(辅助线作法)∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形对应边相等)∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)∴AB+AC>2AD。(常延长中线加倍,构造

4、全等三角形)练习已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2,求证EF=2AD。ABCDEF25-图二、截长补短法作辅助线要证明两条线段之和等于第三条线段,可以采取“截长补短”法。截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。所谓补短,即把两短线段补成一条,再证它与长线段相等。让我们来大显身手吧!例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点求证:AB-AC>PB-PC。要证:AB-AC>PB-PC,想到利用三角形三边关系定理证明。因为欲证的线段之差,故用

5、两边之差小于第三边,从而想到构造第三边AB-AC故可在AB上截取AN等于AC,得AB-AC=BN再连接PN,则PC=PN,又在△PNB中,PB-PNPB-PC。思路导航证明:(截长法)在AB上截取AN=AC连接PN在△APN和△APC中AN=AC(辅助线作法)∠1=∠2(已知)AP=AP(公共边)∴△APN≌△APC(SAS)∴PC=PN(全等三角形对应边相等)∵在△BPN中,有PB-PN

6、知)AP=AP(公共边)∴△ABP≌△AMP(SAS)∴PB=PM(全等三角形对应边相等)又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边)∴AB-AC>PB-PC。在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。求证:DE=AD+BE证明:213∴∠1+∠3=90°.∴∠1+∠2=90°.∴∠2=∠3.∠ADC=∠CEB∴⊿ADC≌⊿CEB∴AD=CE,CD=BE∴DE=AD+BE∵∠ACB=90°,∵BE⊥MN,∵AD⊥MN,∴∠ADC=∠CEB=90°.在⊿ADC和⊿CEB中,AC=BC∠2=∠3∵DE=CE+

7、CD﹛例题讲解1.在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=ACABCDE证明:在AC上截取AE=AB,连结DE∵AD平分∠BAC∴∠1=∠2,在△ABD和△AED中﹛∠1=∠2AB=AEAD=AD∴△ABD≌△AED∴BD=DE,∠B=∠3∵∠3=∠4+∠C∵∠B=2∠C∴∠3=2∠C∴2∠C=∠4+∠C∴DE=CE∴BD=CE∵AE+EC=AC∴AB+BD=AC1234∴∠C=∠4截长法例题讲解1.在△ABC中,∠B=2∠C,AD平分BAC.求证:AB+BD=ACA

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。