资源描述:
《《高数极限讲解》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二、函数的间断点一、函数连续性的定义第八节机动目录上页下页返回结束函数的连续性与间断点第一章可见,函数在点一、函数连续性的定义定义:在的某邻域内有定义,则称函数(1)在点即(2)极限(3)设函数连续必须具备下列条件:存在;且有定义,存在;机动目录上页下页返回结束continue若在某区间上每一点都连续,则称它在该区间上连续,或称它为该区间上的连续函数.例如,在上连续.(有理整函数)又如,有理分式函数在其定义域内连续.在闭区间上的连续函数的集合记作只要都有机动目录上页下页返回结束对自变量的增量有函数的增量左连续右连续当时,有函
2、数在点连续有下列等价命题:机动目录上页下页返回结束例.证明函数在内连续.证:即这说明在内连续.同样可证:函数在内连续.机动目录上页下页返回结束在在二、函数的间断点(1)函数(2)函数不存在;(3)函数存在,但不连续:设在点的某去心邻域内有定义,则下列情形这样的点之一函数f(x)在点虽有定义,但虽有定义,且称为间断点.在无定义;机动目录上页下页返回结束间断点分类:第一类间断点:及均存在,若称若称第二类间断点:及中至少一个不存在,称若其中有一个为振荡,称若其中有一个为为可去间断点.为跳跃间断点.为无穷间断点.为振荡间断点.机动目
3、录上页下页返回结束为其无穷间断点.为其振荡间断点.为可去间断点.例如:机动目录上页下页返回结束显然为其可去间断点.(4)(5)为其跳跃间断点.机动目录上页下页返回结束内容小结左连续右连续第一类间断点可去间断点跳跃间断点左右极限都存在第二类间断点无穷间断点振荡间断点左右极限至少有一个不存在在点间断的类型在点连续的等价形式机动目录上页下页返回结束思考与练习1.讨论函数x=2是第二类无穷间断点.间断点的类型.2.设时提示:3.P64题2,P65题5为连续函数.机动目录上页下页返回结束答案:x=1是第一类可去间断点,P65题5提示:
4、作业P643;4第九节目录上页下页返回结束备用题确定函数间断点的类型.解:间断点为无穷间断点;故为跳跃间断点.机动目录上页下页返回结束一、连续函数的运算法则第九节二、初等函数的连续性机动目录上页下页返回结束连续函数的运算与初等函数的连续性第一章定理2.连续单调递增函数的反函数在其定义域内连续一、连续函数的运算法则定理1.在某点连续的有限个函数经有限次和,差,积,(利用极限的四则运算法则证明)商(分母不为0)运算,结果仍是一个在该点连续的函数.例如,例如,在上连续单调递增,其反函数(递减).(证明略)在[-1,1]上也连续单调
5、递增.递增(递减)也连续单调机动目录上页下页返回结束定理3.连续函数的复合函数是连续的.在上连续单调递增,其反函数在上也连续单调递增.证:设函数于是故复合函数又如,且即机动目录上页下页返回结束例如,是由连续函数链因此在上连续.复合而成,机动目录上页下页返回结束例1.设均在上连续,证明函数也在上连续.证:根据连续函数运算法则,可知也在上连续.机动目录上页下页返回结束二、初等函数的连续性基本初等函数在定义区间内连续连续函数经四则运算仍连续连续函数的复合函数连续一切初等函数在定义区间内连续例如,的连续区间为(端点为单侧连续)的连续
6、区间为的定义域为因此它无连续点而机动目录上页下页返回结束例2.求解:原式例3.求解:令则原式说明:当时,有机动目录上页下页返回结束例4.求解:原式说明:若则有机动目录上页下页返回结束例5.设解:讨论复合函数的连续性.故此时连续;而故x=1为第一类间断点.在点x=1不连续,机动目录上页下页返回结束内容小结基本初等函数在定义区间内连续连续函数的四则运算的结果连续连续函数的反函数连续连续函数的复合函数连续初等函数在定义区间内连续说明:分段函数在界点处是否连续需讨论其左、右连续性.机动目录上页下页返回结束思考与练习续?反例x为有理数
7、x为无理数处处间断,处处连续.反之是否成立?作业P683(5),(6),(7);4(4),(5),(6);5提示:“反之”不成立.第十节目录上页下页返回结束第十节一、最值定理二、介值定理*三、一致连续性机动目录上页下页返回结束闭区间上连续函数的性质第一章注意:若函数在开区间上连续,结论不一定成立.一、最值定理定理1.在闭区间上连续的函数即:设则使值和最小值.或在闭区间内有间断在该区间上一定有最大(证明略)点,机动目录上页下页返回结束例如,无最大值和最小值也无最大值和最小值又如,机动目录上页下页返回结束推论.由定理1可知有证:
8、设上有界.二、介值定理定理2.(零点定理)至少有一点且使机动目录上页下页返回结束(证明略)在闭区间上连续的函数在该区间上有界.定理3.(介值定理)设且则对A与B之间的任一数C,一点证:作辅助函数则且故由零点定理知,至少有一点使即推论:使至少有在闭区间上的连续函数必取得介于最小值与最大值之间