数值分析实验上机题.doc

数值分析实验上机题.doc

ID:51097309

大小:275.50 KB

页数:11页

时间:2020-03-18

数值分析实验上机题.doc_第1页
数值分析实验上机题.doc_第2页
数值分析实验上机题.doc_第3页
数值分析实验上机题.doc_第4页
数值分析实验上机题.doc_第5页
资源描述:

《数值分析实验上机题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数值分析课程实验指导书实验一非线性方程求根一、问题提出设方程有三个实根现采用下面六种不同计算格式,求f(x)=0的根或1、2、3、4、5、6、二、要求1、编制一个程序进行运算,最后打印出每种迭代格式的敛散情况;2、用事后误差估计来控制迭代次数,并且打印出迭代的次数;3、初始值的选取对迭代收敛有何影响;4、分析迭代收敛和发散的原因。三、目的和意义1、通过实验进一步了解方程求根的算法;2、认识选择计算格式的重要性;3、掌握迭代算法和精度控制;4、明确迭代收敛性与初值选取的关系。四、实验学时:2学时五、

2、实验步骤:1.进入matlab开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.生成报告实验二线方程组的直接解法一、问题提出给出下列几个不同类型的线性方程组,请用适当算法计算其解。1、设线性方程组2、设对称正定阵系数阵线方程组1、三对角形线性方程组二、要求1、对上述三个方程组分别利用Gauss顺序消去法与Gauss列主元消去法;平方根法与改进平方根法;追赶法求解

3、(选择其一);2、应用结构程序设计编出通用程序;3、比较计算结果,分析数值解误差的原因;4、尽可能利用相应模块输出系数矩阵的三角分解式。三、目的和意义1、通过该课题的实验,体会模块化结构程序设计方法的优点;2、运用所学的计算方法,解决各类线性方程组的直接算法;3、提高分析和解决问题的能力,做到学以致用;2、通过三对角形线性方程组的解法,体会稀疏线性方程组解法的特点。四、实验学时:2学时五、实验步骤:1.进入matlab开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.生成报

4、告实验三解线性方程组的迭代法一、问题提出对实验四所列目的和意义的线性方程组,试分别选用Jacobi迭代法,Gauss-Seidel迭代法和SOR方法计算其解。二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如由迭代次数体会该迭代法的收敛快慢;3、对方程组2,3使用SOR方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。三、目的和意义1、通过上机计算体会迭

5、代法求解线性方程组的特点,并能和消去法比较;2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序;3、体会上机计算时,终止步骤或k>(予给的迭代次数),对迭代法敛散性的意义;4、体会初始解,松弛因子的选取,对计算结果的影响。四、实验学时:2学时五、实验步骤:1.进入mablab开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.生成报告实验四函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。试用Lagrange公式求其插值多项式或分段线性插值。数据如下:(1)

6、0.40.550.650.800.951.050.410750.578150.696750.901.001.25382求五次Lagrange多项式,和分段线性插值,计算,的值。(提示:结果为,)(2)12345670.3680.1350.0500.0180.0070.0020.001试构造Lagrange多项式,计算的,值。(提示:结果为,)二、要求1、利用Lagrange插值公式编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二

7、点插值,其结果如何;4、对此插值问题用Newton插值多项式其结果如何。Newton插值多项式如下:其中:三、目的和意义1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。四、实验学时:2学时五、实验步骤:1.进入matlab开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.生成报告实验五函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,

8、给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。t(分)051015202530354045505501.272.162.863.443.874.154.374.514.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、*绘制出曲线拟合图。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。