初中数学平面几何之中点.doc

初中数学平面几何之中点.doc

ID:51085678

大小:136.51 KB

页数:6页

时间:2020-03-18

初中数学平面几何之中点.doc_第1页
初中数学平面几何之中点.doc_第2页
初中数学平面几何之中点.doc_第3页
初中数学平面几何之中点.doc_第4页
初中数学平面几何之中点.doc_第5页
资源描述:

《初中数学平面几何之中点.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、初中数学平面几何之------中点问题口诀:三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质(直角三角形斜边中线性质、等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。(一)、中线把原三角形分成两个面积相等的小三角形即如图1,AD是ΔABC的中线,则SΔABD=SΔACD=SΔABC(因为ΔABD与ΔACD是等底同高的)。例1.如图2,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求

2、:ΔCDF的面积。解:因为AD是ΔABC的中线,所以SΔACD=SΔABC=×2=1,又因CD是ΔACE的中线,故SΔCDE=SΔACD=1,因DF是ΔCDE的中线,所以SΔCDF=SΔCDE=×1=。∴ΔCDF的面积为。(二)、由中点应想到利用三角形的中位线例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴MECD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MFAB,∴∠MFE=∠BGE

3、,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE。(三)、由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。解:延长AD到E,使DE=AD,则AE=2AD=2×2=4。在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3。在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2。例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是

4、等腰三角形。证明:延长AD到E,使DE=AD。仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。(四)、直角三角形斜边中线的性质例5.如图6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求证:AC=BD。证明:取AB的中点E,连结DE、CE,则DE、CE分别为RtΔABD,RtΔABC斜边AB上的中线,故DE=CE=AB,因此∠CDE=∠DCE。∵AB//DC,∴∠CDE=∠1,∠DCE=∠2,∴∠1=∠2,在ΔADE和ΔBCE中,∵DE=CE,∠1=∠2,AE=BE

5、,∴ΔADE≌ΔBCE,∴AD=BC,从而梯形ABCD是等腰梯形,因此AC=BD。(六)中线延长口诀:三角形中有中线,延长中线等中线。题目中如果出现了三角形的中线,常延长加倍此线段,再将端点连结,便可得到全等三角形。例一:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。证明:廷长ED至M,使DM=DE,连接CM,MF。在△BDE和△CDM中,BD=CD(中点定义)∠1=∠5(对顶角相等)ED=MD(辅助线作法)∴△BDE≌△CDM(SAS)又∵∠1=∠2,∠3=∠4(已知)∠1+∠2+∠3+∠4=180°(平角的定义)∴∠3+∠2=9

6、0°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中ED=MD(辅助线作法)∠EDF=∠FDM(已证)DF=DF(公共边)∴△EDF≌△MDF(SAS)∴EF=MF(全等三角形对应边相等)∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边)∴BE+CF>EF上题也可加倍FD,证法同上。注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。例二:如图5-1:AD为△ABC的中线,求证:AB+AC>2AD。分析:要证AB+AC>2AD,由图想到:AB+BD>AD,AC+CD>AD,所以有AB+AC

7、+BD+CD>AD+AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去证明:延长AD至E,使DE=AD,连接BE,CE∵AD为△ABC的中线(已知)∴BD=CD(中线定义)在△ACD和△EBD中BD=CD(已证)∠1=∠2(对顶角相等)AD=ED(辅助线作法)∴△ACD≌△EBD(SAS)∴BE=CA(全等三角形对应边相等)∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边)∴AB+AC>2AD。练习:1如图,AB=6,AC=8,D为BC的中

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。