欢迎来到天天文库
浏览记录
ID:51045921
大小:296.00 KB
页数:4页
时间:2020-03-18
《2016数学(四川省)考点跟踪突破29图形的平移.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、考点跟踪突破29 图形的平移一、选择题(每小题6分,共30分) 1.(2015·广西)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为(A)A.(2,-1)B.(2,3)C.(0,1)D.(4,1),第1题图) ,第2题图)2.(2015·泰安)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为(A)A.(4,2)B.
2、(3,3)C.(4,3)D.(3,2)3.(2014·邵阳)某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是(D)A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长4.(2015·丽水)如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有(B)A.3种B.6种C.8种D.12种,第4题图) ,第5题图)5.(201
3、3·滨州)如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD,BD,则下列结论:①AD=BC;②BD,AC互相平分;③四边形ACED是菱形.其中正确的个数有(D)A.0个B.1个C.2个D.3个二、填空题(每小题6分,共30分)6.将点(-2,-5)向左平移3个单位长度后可得对应点坐标是__(-5,-5)__;将点(2,5)向上平移3个单位长度后可得对应点坐标是__(2,8)__.7.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若BC=3,△ABC与△A1B1C1重叠部分的面积为2,则BB1
4、=____.,第7题图) ,第8题图)8.如图,△ABC中,∠ACB=90°,AB=8cm,D是AB的中点.现将△BCD沿BA方向平移1cm,得到△EFG,FG交AC于点H,则GH的长等于__3__cm.9.如图①,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为__2__.10.如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为___
5、_.三、解答题(共40分)11.(10分)(2013·云南)如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形;(2)写出A,B,C三点平移后的对应点A′,B′,C′的坐标.解:(1)如图所示:(2)结合坐标系可得A′(5,2),B′(0,6),C′(1,0)12.(10分)(2015·锦州)如图,在平面直角坐标系中,线段AB的两个端点是A(-5,1),B(-2,3),线段CD的两个端点是C(-5,-1),D(-2,-3).(1)线段AB
6、与线段CD关于直线对称,则对称轴是__x轴__;(2)平移线段AB得到线段A1B1,若点A的对应点A1的坐标为(1,2),画出平移后的线段A1B1,并写出点B1的坐标为__(4,4)__.解:(1)∵A(-5,1),C(-5,-1),∴AC⊥x轴,且到x轴的距离相等,同理BD⊥x轴,且到x轴的距离相等,∴线段AB和线段CD关于x轴对称,故答案为:x轴 (2)∵A(-5,1),A1(1,2),∴相当于把A点先向右平移6个单位,再向上平移1个单位,∵B(-2,3),∴平移后得到B1的坐标为(4,4),线段A1B1如图所示
7、13.(10分)(2014·珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得到△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.解:(1)连接OG,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相
8、切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE-OB=-2= (2)BD=DE-BE=4-=.∵DF∥AC,∴=,即=,解得DH=2.∴S阴影=S△BDH=BD·DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为
此文档下载收益归作者所有