高中数学选修4-4坐标系.ppt

高中数学选修4-4坐标系.ppt

ID:51027188

大小:2.19 MB

页数:38页

时间:2020-03-17

高中数学选修4-4坐标系.ppt_第1页
高中数学选修4-4坐标系.ppt_第2页
高中数学选修4-4坐标系.ppt_第3页
高中数学选修4-4坐标系.ppt_第4页
高中数学选修4-4坐标系.ppt_第5页
资源描述:

《高中数学选修4-4坐标系.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一讲坐标系xxz一、平面直角坐标系1、平面直角坐标系思考:思考:思考:探究根据几何特点选择适当的直角坐标系的一些规则:(1)如果图形有对称中心,可以选择对称中心为坐标原点;(2)如果图形有对称轴,可以选择对称轴为坐标轴;(3)使图形上的特殊点尽可能地在坐标轴上。xO2y=sinxy=sin2x二.平面直角坐标系中的伸缩变换思考:(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,就得到正弦曲线y=sin2x.通常把叫做平面直角坐标系中的一个压缩变换。1坐标对

2、应关系为:1上述的变换实质上就是一个坐标的压缩变换,即:设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横坐标x缩为原来,得到点(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。O2y=sinxy=3sinxyx在正弦曲线上任取一点P(x,y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出其坐标变换。通常把叫做平面直角坐标系中的一个坐标伸长变换。22设点P(x,y)经变换得到点为(3)怎样由正弦曲线y=sinx得到曲线y=3si

3、n2x?写出其坐标变换。O2y=sinxy=3sin2xyx在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变,将横坐标x缩为原来的,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.设点P(x,y)经变换得到点为通常把叫做平面直角坐标系中的一个坐标伸缩变换。3(3)怎样由正弦曲线y=sinx得到曲线y=3sin2x?写出其坐标变换。3定义:设P(x,y)是平面直角坐标系中任意一点,在变换的作用下,点P(x,y)对应称为平面直角坐标系中的伸缩变换。4注(1)(2)把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩

4、变换得到;(3)在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。例2:在直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。(1)2x+3y=0;(2)x2+y2=11.在同一直角坐标系下,求满足下列图形的伸缩变换:曲线4x2+9y2=36变为曲线2.在同一直角坐标系下经过伸缩变换后,曲线C变为,求曲线C的方程并画出图形。课堂小结:(1)体会坐标法的思想,应用坐标法解决几何问题;(2)掌握平面直角坐标系中的伸缩变换。题型一轨迹探求例1线段AB的两个端点分别在两条互相垂直的直线上滑动,且

5、AB

6、=4,求AB中点P的轨迹方程.分析

7、:题目未给出坐标系,因此,应先建立适当的坐标系,显然以互相垂直的两直线分别为x轴,y轴最合适.解析:解法一以两条互相垂直的直线分别为x轴,y轴,建立直角坐标系,如图所示.解法二建立直角坐标系,同解法一.设P(x,y),A(x1,0),B(0,y2),则x+y=16.①又P为AB的中点,所以x1=2x,y2=2y.代入①,得4x2+4y2=16.故点P的轨迹方程为x2+y2=4.答案:x2+y2=4点评:1.求曲线方程一般有下列五个步骤:(1)建立适当的直角坐标系,并用(x,y)表示曲线上任意一点M的坐标,在建立坐标系时,应充分考虑平行、垂直、对称等几

8、何因素,使得解题更加简化;(2)写出适当条件P下的点M的集合:{M

9、P(M)};(3)用坐标表示条件P(M),写出方程f(x,y)=0;(4)化简方程f(x,y)=0(必须是等价变形);(5)证明以(4)中方程的解为坐标的点都在曲线上,补上遗漏点或挖去多余点.一般地,方程的变形过程是等价的,步骤(5)可以省略.2.求曲线方程主要有以下几种方法:(1)条件直译法:如果动点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,我们可以把这些关系直译成含“x,y”(或ρ、θ)的等式,我们称之为“直译”.(2)代入法(或利用相关点法):有时动点所

10、满足的几何条件不易求出,但它随另一动点的运动而运动,称之为相关点.如果相关点满足的条件简单、明确,就可以用动点坐标把相关点的坐标表示出来,再用条件直译法把相关点的轨迹表示出来,就得到原动点的轨迹.(3)参数法:有时很难直接找出动点的横、纵坐标之间的关系,如果借助中间参量(参数),使x、y之间建立起联系,然后再从所求式子中消去参数,这样便可得动点的轨迹方程.(4)定义法:若动点满足已知曲线的定义,可先设方程再确定其中的基本量.3.在掌握求曲线轨迹方程的一般步骤的基础上还要注意:(1)选择适当的坐标系,坐标系如果选择恰当,可使解题过程简化,减少计算量.(

11、2)要注意给出曲线图形的范围,要在限定范围的基础上求曲线方程.如果只求出曲线的方程,而没有根据题目要求确定出

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。