探究圆锥曲线中的存在性问题.doc

探究圆锥曲线中的存在性问题.doc

ID:50964827

大小:1.35 MB

页数:18页

时间:2020-03-16

探究圆锥曲线中的存在性问题.doc_第1页
探究圆锥曲线中的存在性问题.doc_第2页
探究圆锥曲线中的存在性问题.doc_第3页
探究圆锥曲线中的存在性问题.doc_第4页
探究圆锥曲线中的存在性问题.doc_第5页
资源描述:

《探究圆锥曲线中的存在性问题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、......探究圆锥曲线中的存在性问题圆锥曲线是解析几何的核心内容,是中学数学的重点、难点,是高考命题的热点之一,各种解得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了解题方法在本章题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题的形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2010年高考

2、对本讲的考察,仍将以以下两类题型为主1.求曲线(或轨迹)的方程。对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2.与圆锥曲线有关的最值(或极值)和取值范围问题,圆锥曲线中的定值、定点问题,探究型的存在性问题。这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、平面向量、函数、不等式、三角函数知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进

3、行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线的问题。今天,我就圆锥曲线中的存在性问题从五个方面给大家做一个分享,也希望能给大家带来一点点的启示。一、是否存在这样的常数例1.(2007宁夏理19题)专业技术资料......在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.(I)求的取值范围;(II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,

4、求值;如果不存在,请说明理由.解:(Ⅰ)由已知条件,直线的方程为,代入椭圆方程得.整理得  ①直线与椭圆有两个不同的交点和等价于,解得或.即的取值范围为.(Ⅱ)设,则,由方程①,.   ②又.    ③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数.xAy112MNBO练习1:(08陕西卷20).(本小题满分12分)已知抛物线:,直线交于两点,是线段的中点,过作轴的垂线交于点.(Ⅰ)证明:抛物线在点处的切线与平行;(Ⅱ)是否存在实数使,若存在,求的值;若不存在,说明理由.专业技术资料..

5、....解法一:(Ⅰ)如图,设,,把代入得,由韦达定理得,,,点的坐标为.设抛物线在点处的切线的方程为,将代入上式得,直线与抛物线相切,,.即.(Ⅱ)假设存在实数,使,则,又是的中点,.由(Ⅰ)知.轴,.又.,解得.即存在,使.解法二:(Ⅰ)如图,设,把代入得.由韦达定理得.专业技术资料......,点的坐标为.,,抛物线在点处的切线的斜率为,.(Ⅱ)假设存在实数,使.由(Ⅰ)知,则,,,解得.即存在,使.练习2.直线与曲线相交于P、Q两点。(1)当a为何值时,;(2)是否存在实数a,使得以PQ为直径的圆经过原点O?若

6、存在,求出的值,若不存在,请说明理由。解:(1)联立方程,专业技术资料......,即,设P、Q两点的坐标为,所以,化简得即为所求。(1)假设存在实数a,使得以PQ为直径的圆经过原点O,二、是否存在这样的点例2.(2009全国卷Ⅱ)(本小题满分12分)已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为(I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。解析:本题考查解析几何与平面向量知识综合运用能力,第一问

7、直接运用点到直线的距离公式以及椭圆有关关系式计算,第二问利用向量坐标关系及方程的思想,借助根与系数关系解决问题,注意特殊情况的处理。解:(Ⅰ)设当的斜率为1时,其方程为到的距离为,故,,由,得,=(Ⅱ)C上存在点,使得当绕转到某一位置时,有成立。专业技术资料......由(Ⅰ)知椭圆C的方程为+=6.设(ⅰ) 假设上存在点P,且有成立,则,,整理得故①将②于是,=,,代入①解得,,此时于是=,即因此,当时,,;当时,,。(ⅱ)当垂直于轴时,由知,C上不存在点P使成立。综上,C上存在点使成立,此时的方程为.例3.(200

8、9福建卷)(本小题满分14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点。(I)求椭圆的方程;(Ⅱ)求线段MN的长度的最小值;专业技术资料......(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由(I)由已

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。