欢迎来到天天文库
浏览记录
ID:50945020
大小:7.35 MB
页数:88页
时间:2020-03-08
《稳态渗流问题中的FEMOL平面线性样条曲线单元研究.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、,’,'、'''""'少V''气■-.r<tw;?&^V-■'^-■i;p矿^X#\巧7!殺笃解^;璋;議窮攀繫類榮繁,’;‘,换、严VV:/V弁:餐;心片马顯禱讓冀胃户^麟誠^:莫衰安巧浦!j4/:^/1^'’、.—'■'.片'々.’.>保'抑舶;;v黃繁皆取芦'i,;巧护^或.門硕±妍究生学化洛文病'心^^^皆':,:誦奪識!.細:%^'^.心、..;^^.;朵&巧黃,^議讚餐議難為^紙;麵顯繫脚繫給式伽、?稳态渗流问题中的如欠\W庐赛户;:{
2、了7FEMOL平面线性样条曲线单元研堯片巧沒..'.、、皆.骂换,;V..;,公磅環4-‘、、*毎終'泰两输蛾、'‘、、'—’'-''心<、'、心妒二叛^准-取.。.球,安;/'二扣.学朽韓名.r:…繁梭脊r..奇與—繫茲声,苦吟^14:心.号二巧鉛宿.;?,、轉氏.;.^觀/、讀遲覇議滅:'、.-’>-工程r/.-止旅<:片:V非.’:.:-,叫知苗巧V导;站細JSS^I3iiS篡;#誦義讓讀瞧疆議講:V-.评::;记.:,鑛於職爲斬雜7;一'、2〇^5月
3、肯.、:掉V:、弟.游黃覆謂策論熱.巧.J!J脊;磯蟲誦叫叫麵强攀轉掛姑睡\識;韓謹襄括每参:巍戀黏窜織;備導满霉'诚.續繊電伽争.心樂£師磯te:麵读游游、壤..’:X浴;滿與UU巧齡北方工业大学学位论文原创性声明J本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体己经发表或揉写过的作品成果。对本文的研巧做出重要贡献的个人和集体,均已在文中W明确方式标明。本人完全意识到本声明的法律结果由本
4、人承担。学位论文作者签名:多良乃i曰親>。7年/月?曰信;学位论文使用授权书学位论文作者完全了解北方工业大学有关保留和使用学位论文的规定,即。学;研究生在校攻读学位期间论文工作的知识产权单位属北方工业大学校有权保留并向国家有关部口或机构送交论文的复印件和电子版,允许学位JI公布学位论文的全部或部分内容论文被查阅和借阅;学校可U,可W允许采用影印、缩印或其它复制手段保存、汇编学位论文(保密的学位论文在解密后适用于本授权书)。□保密论文注释:经本人申请,学校批准,本学位论文定为保密论文,密
5、级:,期限:年,自年月日起至年月日止,解密后适用本授权书。□非保密论文注释;本学位论文不属于保密范围,适用本授权书。■本人签名;化日期:W?^),/■导师签名;>.日期:?/),稳态渗流问厘中的FEMOL平面线性祥条曲线单元研究巧要men一有限元线法(FiniteEletMethodofLines,简称FEMOL)是种新型的半数值半解析方法,它W常微分方程(OrdinarDiferentialEationODE求yqu,简称)解器为支撑软件。此方法在固体力学
6、中的运用己经较为成熟,在热传导问题中也在不断发展。本文初次将有限元线法引进到二维稳态渗流问题当中,主要研究内容如下;(1)建立二维稳态渗流场的FEMOL平面线性样条曲线单元,基于H次B样条插值基函数和线性Lagrange插值基函数,建立了FEMOL平面线性样条曲线单元映射。该单元在结线方向采用的是H次B样条插值,端线方向采用的是arane插值-线性Lgg,将不规则单元映射到[1,U局部坐禄下的规则单元。(2)利用变分原理,建立了二维稳态渗流场进行了FEMOL平面线性样条曲线单元半离散泛函,
7、将求解二维稳态渗流问题的偏微分方程的边值问题转化成求解其泛函的极值问题,得到关于二维稳态渗流间题的常微分方程组(ODES)W及相应的边界条件巧Cs)。(3)WFEMOL平面线性样条曲线单元映射UJ二维l及该单元下稳态渗流泛函变分计算为基拙,利用FORTRAN%语言编写了求解二维平面稳态渗流问题—的专有程序SSFEMOL1.0SYS的,其中调用COL升级版本COL90作为常微分方程求解器,使其具有更髙的计算效率。(4)运用逆解法,编写二维稳态渗流问题的相关算例,将计算结果与解析解、有限元方
8、法计算结果进行对比,在网格划分、计算精度,方法适用性等几个方面进行分析。关键词:稳态渗流问题,有限元线法,平面线性样条曲线单元IThestudyofPlanarLinearSplineCurveelementofFEMOLinSteadySeepae
此文档下载收益归作者所有