初中数学集体备课教案.doc

初中数学集体备课教案.doc

ID:50939176

大小:217.00 KB

页数:14页

时间:2020-03-16

上传者:U-6270
初中数学集体备课教案.doc_第1页
初中数学集体备课教案.doc_第2页
初中数学集体备课教案.doc_第3页
初中数学集体备课教案.doc_第4页
初中数学集体备课教案.doc_第5页
资源描述:

《初中数学集体备课教案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

诸市一中教师集体备课教案(设计方案)年级:八年级学科:《数学》2016-2017学年第一学期周次课题第二单元实数第三节立方根集体备课教师执笔王婵备课组成员王婵、杨淑辉、禹杰玉教学目标1.使学生了解一个数的立方根概念,并会用根号表示一个数的立方根; 2.理解开立方的概念; 3.明确立方根个数的性质,分清一个数的立方根与平方根的区别. 教学重难点教学重点:立方根的概念及求法教学难点:立方根与平方根的区别. 教前准备课件教学课时1教学过程一、复习:请同学回答下列问题:(1)什么叫一个数a的平方根?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(3)当a≥0时,式子a,-a,±a,的意义各是什么?二、引入新课1.计算下列各题:(1);  (2);  (3).2.立方根的概念.一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).用式子表示,就是,如果=a,那么x叫做a的立方根.数a的立方根用符号“”表示,读作“三次根号a,其中a是被开方数,3是根指数.(注意:根指数3不能省略).3.开立方.求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.三、讲解例题:例1求下列各数的立方根:(1)8;(2)-8;(3)0.125;(4)-27125;(5)0.分析:求一个数的立方根,我们可以通过立方运算来求.(2)因为=8,所以-8的立方根是-2即 =-2(3)因为=0.125,所以0.125的立方根是0.5,即=0.5.个性教案:个性教案:可编辑word文档 教学过程(4)因为(-)3=-,所以-27125的立方根是-35,即=-.(5)因为=0,所以0的立方根是0,即=0.例2求下列各式的值:(1);  (2);  (3).四、随堂练习1.判断题:(1)4的平方根是2;(2)8的立方根是2;(3)-0.064的立方根是-0.4;(4)127的立方根是±13(5)-的平方根是±4;(6)-12是144的平方根2.选择题:(1)数0.000125的立方根是.A.0.5B.±0.5C.0.05D.0.005(2)下列判断中错误的是(  )A.一个数的立方根与这个数的乘积为非负数B.一个数的两个平方根之积负数C.一个数的立方根未必小于这个数D.零的平方根等于零的立方根  3.求下列各数的立方根:(1)27;(2)-38;(3)1;(4)0.4.求下列各式的值:(1)100;(2);(3);(4);(5);五、小结请思考下面的问题:1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?2.数的立方根与数的平方根有什么区别?3.正数只有一个正的立方根,但有两个互为相反数的平方根;负数有一个负的立方根,但没有平方根.4.求一个数的立方根,可以通过立方运算来求.教学反思:可编辑word文档 诸市一中教师集体备课教案(设计方案)年级:八年级学科:《数学》2016-2017学年第一学期周次课题第二单元实数第七节二次根式集体备课教师执笔王婵备课组成员王婵、杨淑辉、禹杰玉教学目标1.式子(a≥0,b≥0);(a≥0,b>0)的运用.2.能利用化简对实数进行简单的四则运算.教学重难点1.两个法则的逆运用.2.能运用实数的运算解决简单的实际问题.教前准备课件教学课时1教学过程一.导入新课请大家先回忆一下算术平方根的定义.(若一个正数x的平方等于a,则x叫a的算术平方根.)下面我们用算术平方根的定义来求下列两个正方形的边长,以及边长之间的关系.问:设大正方形的边长为a,小正方形的边长为b.请同学们互相讨论后得出结果.(由正方形面积公式得a2=8,b2=2.所以大正方形边长a=,小正方形边长b=.)问:那么a与b之间有怎样的倍分关系呢?请观察图中的虚线.(大正方形的面积为小正方形面积的4倍,大正方形的边长是小正方形边长的2倍.所以=2.)那么根据什么法则就能化成2呢?这就是本节课的任务.二.新课讲解请大家回忆一下上节课学的两个法则是什么?((a≥0,b≥0);(a≥0,b>0))个性教案:可编辑word文档 教学过程请大家根据上面法则化简下列式子.(1);(2);(3);(4).请大家思考一下,刚才这位同学的步骤反过来推是否成立?即从右往左推(.因为从左到右是等式的推导,而从右向左也是等式的推导,只不过是反过来推也应成立.)确实成立.下面再分析这些式子:并和上节课的两个法则相比较,有什么不同吗?请大家交流后回答.大家能否用式子表示出来?小结:(a≥0,b≥0)(a≥0,b>0.)化简:(1);(2);(2);(4);(5);(6)..大家能不能总结一下刚才化简的这些式子有何规律呢?这说明根号里面的数有一部分移到了根号外面,那么什么数能往外移呢?它们又具备什么条件呢?(是平方数.如(1)中根号内的9移到外面变成了3;(2)、(4)中也是,(3)中有64移到外面成了8.(5)中16移到外面变成4,(6)中分母16,分子25移到外面变成4,5.)也就是说被开方数中能分解因数.且有些因数能开出来.这时就需要对其进行化简.那么像下面的式子叫不叫化简呢?(化简)能否说一下它的特征呢?如果被开方数中含有分母,要把分子分母同时乘以某一个数,使得分母变成一个能开出来的数,然后把分母开出来,使被开方数中没有了分母.这也叫化简.根据刚才我们的讨论,对于两种情形可通过法则的逆运算进行化简,那么究竟是哪两种情形呢?(.如果被开方数中含有分母,或者含有开得尽的因数,则可通过逆运算进行化简.)上节课和本节课我们做的工作都是化简,并且用的是相同的两个公式,那么究竟什么情况下用法则、什么情况下又用法则的逆运算呢?个性教案:可编辑word文档 一般地,当被开方数中含有分母或者含有能开得尽的因数时,用法则的逆运算;当两个含有根号的数相乘或相除,它们的被开方数单独开不出来,但是通过相乘或相除能出现开得尽的因数时用法则.例题讲解[例1]化简:(书上50页例2)[例2]化简:(1)-2;(2)-;(3)-;(4);(5);(6)三.课堂练习(1)随堂练习(2)化简:(1);(2);(3);(4).四.课堂小结教学反思:诸市一中教师集体备课教案(设计方案)可编辑word文档 年级:八年级学科:《数学》2016-2017学年第一学期周次课题第三单元位置与坐标第一节确定位置集体备课教师执笔王婵备课组成员王婵、杨淑辉、禹杰玉教学目标1.在现实情景中感受物体定位的多种方法2.能较灵活的运用不同的方式对物体定位3.体会生活中位置的确定,离不开数据,离不开数学及数学与生活的密切关系。4突出在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。教学重难点教学重点:突出在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。教学难点:灵活运用不同方式确定物体的位置。(需要学生的一定生活经验)教前准备课件教学课时1教学过程1、引言:美伊战争美军从地中海,红海,波斯湾三艘航空母舰上对巴格达发射了战斧式巡航导弹,当时巴格达一片火海,美国的导弹为何会打的那么准?2、最近有一件令全中国人骄傲和自豪的大事大家知道是什么吗?回顾一下这一激动人心的时刻:从发射到返回到杨利伟成功着陆?大家思过吗:我们在茫茫草原上是怎样找到杨利伟的,他的位置是怎样确定的?(板书确定位置)3、实际上这都有赖于“卫星全球定位仪”——GPS,因为全球任何一个地方都存在唯一的经度和纬度。我们可以通过目标物如神州五号飞船的返回仓发出的信号,利用GPS“卫星全球定位仪”测得它的经纬度,顺利的找到我们的英雄杨利伟。板书GPS定位(经度,纬度)4、举几个实例:(1)在电影院内如何找到电影票上所指的位置?(2)在电影票上,“6排3号”与“3排6号”中的6的含义有什么不同?(3)如果将“8排3号”简记作(8,3),那么“3排8号”如何表示?(5,6)表示什么含义?5、(1)电影院确定一个座位,需要几个数,怎样确定?个性教案:个性教案:可编辑word文档 教学过程(2)如果老师要点一名同学回答问题,又不知道同学们的姓名,请大家帮忙设计一种方法,让老师站在讲台上就能让同学知道老师在叫自己6、(1)正门北偏东27度的方向上有那些动物景点?要想确定蝴蝶馆的位置,还需要有什么数据?(2)据正门图上的距离1cm处的景点又有哪些?(3)要确定每个景点的位置,各需要几个数据?7、请用图上街道或十字路口为参照,说出莲花中学位置8、在生活中,你想确定什么物体的位置?用怎样的方法?与同伴交流。(假定我是位游客,我知道钟楼的位置和附近主要街道的位置,你是位小导游,请你为我介绍西安的风景名胜如南城门,大雁塔,碑林,等的位置,)9、小结在平面上确定物体位置的方法多样性和实质统一性:都需要两个数据。在平面上确定物体的位置一般需要几个数据?每个数椐代表什么量?在平面上确定物体的位置,一般方式:用两个数据a和b记(a,b),a表示:排、行、经度、角度、距离……b表示:号、列、纬度、距离、角度……教学反思:诸市一中教师集体备课教案(设计方案)可编辑word文档 年级:八年级学科:《数学》2016-2017学年第一学期周次课题第四单元一次函数第一节函数集体备课教师执笔王婵备课组成员王婵、杨淑辉、禹杰玉教学目标1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。3、会对一个具体实例进行概括抽象成为数学问题。教学重难点1、掌握、并理解函数概念。2、判断两个变量之间的关系是否可看作函数。3、能把实际问题抽象概括为函数问题。教前准备课件教学课时1教学过程一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?分析有道理。摩天轮上一点的高度h与旋转时间t之间有一定的关系。请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。大家从图上可以看出,每过6分钟摩天轮就转一圈。高度h完整地变化一次。而且从图中大致可以判断给定的时间所对应的高度h。下面根据图5-1进行填表:t/分012345……h/米t/分012345……h/米31137453711……生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。下面我们就去研究一些有关变量的问题。二、新课学习1、做一做个性教案:个性教案:可编辑word文档 教学过程(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的?填写下表:层数n12345…物体总数y1361015…『师』:在这个问题中的变量有几个?分别师什么?『生』:变量有两个,是层数与圆圈总数。(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式,其中V表示刹车前汽车的速度(单位:千米/时)①计算当fenbie为50,60,100时,相应的滑行距离S是多少?②给定一个V值,你能求出相应的S值吗?1、议一议在上面我们研究了三个问题。下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。通过对这三个问题的研究,明确“给定其中某一个变量的值,相应地就确定了另一个变量的值”这一共性。2、函数的概念在上面各例中,都有两个变量,给定其中某一各变量(自变量)的值,相应地就确定另一个变量(因变量)的值。一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。三、随堂练习书P152页随堂练习1、2、3四、本课小结1、初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。2、在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。3、函数的三种表达式:(1)图象;(2)表格;(3)关系式。五、探究活动可编辑word文档 为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x>10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?(参考答案:Y=1.8x-6或)六、课后作业习题6.1教学反思:经历函数概念的抽象概括过程,初步掌握函数概念,通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。一个具体实例进行概括抽象成为数学问题。体会函数的模型思想,让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。诸市一中教师集体备课教案(设计方案)年级:八年级学科:《数学》2016-2017学年第一学期周次可编辑word文档 课题第四单元一次函数第二节一次函数与正比例函数集体备课教师执笔王婵备课组成员王婵、杨淑辉、禹杰玉教学目标1、理解一次函数和正比例函数的概念,以及它们之间的关系。2、能根据所给条件写出简单的一次函数表达式。教学重难点1、一次函数、正比例函数的概念及关系。2、会根据已知信息写出一次函数的表达式。教前准备课件教学课时1教学过程1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:x/千克012345y/厘米33.544.555.5(2)你能写出x与y之间的关系式吗?分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。个性教案:个性教案:可编辑word文档 教学过程2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。(1)完成下表:汽车行驶路程x/千米050100150200300油箱剩余油量y/升你能写出x与y之间的关系吗?(y=100-0.18x或y=100-x)3、一次函数,正比例函数的概念上面的两个函数关系式为y=0.5x+3,y=100-0.18x,都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。4、例题讲解例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=;③y=;④y=7-xA、①②③B、①③④C、①②③④D、②③④例2:写出下列各题中x与y之间的关系式,并判断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;②圆的面积y(厘米2)与它的半径x(厘米)之间的关系;③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)[(1)y=60x,y是x的一次函数,也是x的正比例函数;(2)y=πx2,y不是x的正比例函数,也不是x的一次函数;(3)y=50+2x,y是x的一次函数,但不是x的正比例函数]。例3:我国现行个人工资薪金税征收办法规定:月收入低于800元但低于1300元的部分征收5%的所得税……如某人某月收入1160元,他应缴个人工资薪金所得税为(1160-800)×5%=18(元)可编辑word文档 ①当月收入大于800元而又小于1300元时,写出应缴所得税y(元)与月收入x(元)之间的关系式。②某人某月收入为960元,他应缴所得税多少元?③如果某人本月缴所得税19.2元,那么此人本月工资薪金是多少元?分析:(1)当月收入大于800元而小于1300元时,y=0.05×(x-800);(2)当x=960时,y=0.05×(960-800)=8(元);(3)当x=1300时,y=0.05×(1300-800)=25(元),25>19.2,因此本月工资少于1300元,设此人本月工资是x元,则0.05×(x-800)=19.2,x=1184。5、课堂练习随堂练习(1)解:y=2.2x,y是x的一次函数,也是x的正比例函数。(2)解:y=100+8x,y是x有一次函数。补充练习1、见下表:x-2-1012……y-5-2147……根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]可编辑word文档 六、课后小节1、一次函数、正比例函数的概念及关系。2、能根据已知简单信息,写出一次函数的表达式。七、课后作业P161习题6.2教学反思:教后感:经历利用一次函数探索一般规律解决实际问题,通过由已知信息写一次函数表达式的过程,理解一次函数和正比例函数的概念,以及它们之间的关系。发展学生的数学应用能力及数学思维。[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]可编辑word文档

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭