直线、平面平行的判定及其性质习题.doc

直线、平面平行的判定及其性质习题.doc

ID:50888702

大小:604.50 KB

页数:8页

时间:2020-03-15

直线、平面平行的判定及其性质习题.doc_第1页
直线、平面平行的判定及其性质习题.doc_第2页
直线、平面平行的判定及其性质习题.doc_第3页
直线、平面平行的判定及其性质习题.doc_第4页
直线、平面平行的判定及其性质习题.doc_第5页
资源描述:

《直线、平面平行的判定及其性质习题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2010届高三数学一轮复习强化训练精品――直线、平面平行的判定及性质基础自测1.下列命题中,正确命题的个数是.①若直线l上有无数个点不在平面内,则l∥;②若直线l与平面平行,则l与平面内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l与平面平行,则l与平面内的任意一条直线都没有公共点.答案12.下列条件中,不能判断两个平面平行的是(填序号).①一个平面内的一条直线平行于另一个平面②一个平面内的两条直线平行于另一个平面③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面答案

2、①②③3.对于平面和共面的直线m、n,下列命题中假命题是(填序号).①若m⊥,m⊥n,则n∥②若m∥,n∥,则m∥n③若m,n∥,则m∥n④若m、n与所成的角相等,则m∥n答案①②④4.已知直线a,b,平面,则以下三个命题:①若a∥b,b,则a∥;②若a∥b,a∥,则b∥;③若a∥,b∥,则a∥b.其中真命题的个数是.答案05.如图所示,在三棱柱ABC—A1B1C1中,M、N分别是BC和A1B1的中点.求证:MN∥平面AA1C1.证明设A1C1中点为F,连接NF,FC,∵N为A1B1中点,∴NF∥B1C1,且NF=B1C1,又由棱柱性质知B1C1BC,又M是B

3、C的中点,∴NFMC,∴四边形NFCM为平行四边形.∴MN∥CF,又CF平面AA1C1,MN平面AA1C1,∴MN∥平面AA1C1.例1如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.证明方法一分别过E,F作EM⊥AB于M,FN⊥BC于N,连接MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN.又∵B1E=C1F,∴EM=FN,故四边形MNFE是平行四边形,∴EF∥MN.又MN平面ABCD,EF平面ABCD,所以EF∥平面A

4、BCD.方法二过E作EG∥AB交BB1于G,连接GF,则,∵B1E=C1F,B1A=C1B,∴,∴FG∥B1C1∥BC,又EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD,而EF平面EFG,∴EF∥平面ABCD.例2已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.(1)求证:平面G1G2G3∥平面ABC;(2)求S△∶S△ABC.(1)证明如图所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD,则有PG1∶PD=2∶3,PG2∶PE=2∶3,∴G1G2∥DE.又

5、G1G2不在平面ABC内,∴G1G2∥平面ABC.同理G2G3∥平面ABC.又因为G1G2∩G2G3=G2,∴平面G1G2G3∥平面ABC.(2)解由(1)知=,∴G1G2=DE.又DE=AC,∴G1G2=AC.同理G2G3=AB,G1G3=BC.∴△G1G2G3∽△CAB,其相似比为1∶3,∴S△∶S△ABC=1∶9.例3(16分)如图所示,平面∥平面,点A∈,C∈,点B∈,D∈,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.(1

6、)证明①当AB,CD在同一平面内时,由∥,平面∩平面ABDC=AC,平面∩平面ABDC=BD,∴AC∥BD,2分∵AE∶EB=CF∶FD,∴EF∥BD,又EF,BD,∴EF∥.4分②当AB与CD异面时,设平面ACD∩=DH,且DH=AC.∵∥,∩平面ACDH=AC,∴AC∥DH,∴四边形ACDH是平行四边形,6分在AH上取一点G,使AG∶GH=CF∶FD,又∵AE∶EB=CF∶FD,∴GF∥HD,EG∥BH,又EG∩GF=G,∴平面EFG∥平面.∵EF平面EFG,∴EF∥.综上,EF∥.8分(2)解如图所示,连接AD,取AD的中点M,连接ME,MF.∵E,F分别

7、为AB,CD的中点,∴ME∥BD,MF∥AC,且ME=BD=3,MF=AC=2,∴∠EMF为AC与BD所成的角(或其补角),∴∠EMF=60°或120°,12分∴在△EFM中由余弦定理得,EF===,即EF=或EF=.16分1.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.解SG∥平面DEF,证明如下:方法一连接CG交DE于点H,如图所示.∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG

8、的中点.∴FH是△SCG

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。