2016挑战中考数学压轴题因动点产生的平行四边形问题.doc

2016挑战中考数学压轴题因动点产生的平行四边形问题.doc

ID:50803454

大小:774.50 KB

页数:19页

时间:2020-03-14

2016挑战中考数学压轴题因动点产生的平行四边形问题.doc_第1页
2016挑战中考数学压轴题因动点产生的平行四边形问题.doc_第2页
2016挑战中考数学压轴题因动点产生的平行四边形问题.doc_第3页
2016挑战中考数学压轴题因动点产生的平行四边形问题.doc_第4页
2016挑战中考数学压轴题因动点产生的平行四边形问题.doc_第5页
资源描述:

《2016挑战中考数学压轴题因动点产生的平行四边形问题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、..因动点产生的平行四边形问题例12015年成都市中考第28题如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形

2、能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图1备用图动感体验请打开几何画板文件名“15成都28”,拖动点E在直线AD上方的抛物线上运动,可以体验到,当EC⊥AC时,△ACE的面积最大.点击屏幕左下角的按钮“第(3)题”,拖动点H在y轴正半轴运动,观察点Q和Q′,可以看到点Q和点Q′都可以落在抛物线上.思路点拨1.过点E作x轴的垂线交AD于F,那么△AEF与△CEF是共底的两个三角形.2.以AD为分类标准讨论矩形,当AD为边时,AD与QP平行且相等,对角线AP=QD;当AD为对角线时,AD与

3、PQ互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1,0).由CD=4AC,得xD=4.所以D(4,5a).由A(-1,0)、D(4,5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x,ax2-2ax-3a),F(x,ax+a),那么EF=yE-yF=ax2-3ax-4a.由S△ACE=S△AEF-S△CEF=.下载可编辑...===,得△ACE的面积的最大值为.解方程,得.(3)已知A(-1,0)、D(4,5a)

4、,xP=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由xD-xA=xP-xQ,得xQ=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4,21a).由yD-yA=yP-yQ,得yP=26a.所以P(1,26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以.此时P.②如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由xD+xA=xP+xQ,得xQ=2.所以Q(2

5、,-3a).由yD+yA=yP+yQ,得yP=8a.所以P(1,8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以.此时P.图1图2图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,∠QPD=90°,所以,即.解得.所以P.所以Q.将Q代入y=a(x+1)(x-3),得.所以.②如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由∠AQD=90°,得,即.解得..下载可编辑...例22014年陕西省中考第24题如图1,已知抛物

6、线C:y=-x2+bx+c经过A(-3,0)和B(0,3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?.下载可编辑...图1动感体验请打开几何画板文件名“14陕西24”,拖动右侧的点M′上下运动,可以体验到,以点M、N、M′、N′为顶点的平行四边形有四

7、种情况.思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A(-3,0)、B(0,3)分别代入y=-x2+bx+c,得解得b=-2,c=3.所以抛物线C的表达式为y=-x2-2x+3.(2)由y=-x2-2x+3=-(x+1)2+4,得顶点

8、M的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN边对应的高NN′=4.那么以点M、N、M′、N′为顶点的平行四边形有4种情况:抛物线C直接向右平移4个单位得到平行四边形MNN′M′(如图2);抛物线C直接向左平移4个单位得到平行四边形MNN′M′(如图2);抛物线C先向右平移4个单位,再向下平移8个单位得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。