不等关系与不等式.ppt.ppt

不等关系与不等式.ppt.ppt

ID:50783564

大小:1.30 MB

页数:21页

时间:2020-03-14

不等关系与不等式.ppt.ppt_第1页
不等关系与不等式.ppt.ppt_第2页
不等关系与不等式.ppt.ppt_第3页
不等关系与不等式.ppt.ppt_第4页
不等关系与不等式.ppt.ppt_第5页
资源描述:

《不等关系与不等式.ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、3.1不等关系与不等式第一课时1.理解现实生活中的不等关系2.用不等式(组)表示不等关系3.会比较两个代数式的大小问题提出1.在数学中,表示等量关系的式子叫做等式,那么“不等式”的含义如何理解?表示不等关系的式子叫做不等式.长短大小轻重高矮问题情境现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。例如,不等关系是两个量不相等的一种关系例如:1、a与b的和是非负数;2、某公路立交桥对通过车辆的高度h“限高4m”想一想,你还能举出哪些相似的例子?,这样的一些符号来表示。在数学中,我们常用不等式来表示不等关系。那么同学们,你能不能用这些符号把下述关系表示出来呢?<,>,≤,≥,≠现

2、实生活中的这些不等关系我们常用知识探究(一):用不等式表示不等关系思考1:限速40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h.怎样用不等式表示这里的不等关系?0<v≤40这是某酸奶的质量检查规定脂肪含量(f)蛋白质含量(p)不少于2.5%不少于2.3%用数学关系来反映就是f≥2.5%p≥2.3%.思考2:从表格中你能获得什么信息?思考3:设点A与平面α的距离为d,B为平面α上的任意一点,则d与

3、AB

4、的大小关系怎样表示?d≤

5、AB

6、ABd思考4:某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元销售量就可能相应减少20

7、00本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?分析:若杂志的定价为x元,则销售量减少:因此,销售总收入为:用不等式表示为:思考5:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm的两种规格。按照生产的要求,600mm的钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根。根据题意,应当有什么样的不等关系呢?(3)截得两种钢管的数量都不能为负。(2)截得600mm钢管的数量不能超过500mm的钢管数量的3倍;(1)截得两种钢管的总长度不能超过400

8、0mm;上面三个不等关系,是“且”的关系,要同时满足的话,可以用下面的不等式组来表示:考虑到实际问题的意义,还应有x,y∈Nx,y∈N练习1:若需在长为4000mm圆钢上,截出长为698mm和518mm的两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设698mm与518mm的毛坯分别x个与y个练习2:某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒,用不等式组表示软件数x与磁盘数y应满足的条件.知识探究(二):比较实数大小的基本原理思考1:实数可以比较大小,对于两个实数a,b,其大小关系有哪几种可能

9、?a>b,a=b,a<b.思考2:任何一个实数都对应数轴上的一个点,那么大数与小数所对应的点的相对位置关系如何?大数对应的点位于小数对应的点的右边思考3:如果两个实数的差是正数,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?a-b>0a>b思考4:如果两个实数的差等于零,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?a-b=0a=b思考5:如果两个实数的差是负数,那么这两个实数的大小关系如何?反之成立吗?如何用数学语言描述这个原理?a-b<0a<b上面的符号表示“等价于”,即可以互相推出。从上面性质可知,要比较两个实数的大小,可以考察这两

10、个实数的差。这是我们研究不等关系的一个出发点。例:比较下列两组代数式的大小:(1)x2+3与3x;(2)x6+1与x4+x2;(3)练习:比较下列各组中两个代数式的大小(1)与(2)与(3)当时,与(4)与小结作业1.用不等式表示不等关系是一种数学建模,准确理解题意,设定字母表示相关数量,是正确建模的关键.对具有多个不等关系的实际问题,要用不等式组来表示.2.两个实数的差的符号能反映这两个实数的大小关系,这是确定两个实数大小关系的基本原理,同时也是发掘不等式性质的理论依据.3.用“作差法”比较两个代数式的大小,一般分三步进行:作差→变形→判断符号.其中变形的目的在于判断差式的符号,常用

11、的变形手段有因式分解、配方等.作业:P74练习:1,2.P75习题3.1B组:1.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。