欢迎来到天天文库
浏览记录
ID:50772610
大小:1.16 MB
页数:10页
时间:2020-03-14
《北京市各区2012年初三第一学期期末试题按题型分类(二)图形变换型命题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、图形变换型命题(西城北)6.如图,以点D为位似中心,作△ABC的一个位似三角形A1B1C1,A,B,C的对应点分别为A1,B1,C1,DA1与DA的比值为k,若两个三角形的顶点及点D均在如图所示的格点上,则k的值和点C1的坐标分别为A.2, B.4,C.2,D.2,(通县)12.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿方向平移得到.如果,,则图中阴影部分面积为.(昌平)12.如图,点A1,A2,A3,…,点B1,B2,B3,…,分别在射线OM,ON上.OA1=1,A1B1=2OA1,A1A2=2OA1,A2A3=3O
2、A1,A3A4=4OA1,….A1B1∥A2B2∥A3B3∥A4B4∥….则A2B2=,AnBn=(n为正整数).(朝阳)16.(本小题满分4分)如图,在平面直角坐标系中,△ABC和△是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)若点A(,3),则A′的坐标为;(2)若△ABC的面积为m,则△A′B′C′的面积=.(海淀)16.如图,在正方形网格中,△ABC的顶点和O点都在格点上.(1)在图1中画出与△ABC关于点O对称的△A′B′C′;(2)在图2中以点O为位似中心,将△ABC放大为原来的2倍(只需
3、画出一种即可).解:(大兴)23.已知:在中,,点为边的中点,点在上,连结并延长到点,使,点在线段上,且.(1)如图1,当时,求证:;(2)如图2,当时,则线段之间的数量关系为 ;(3)在(2)的条件下,延长到,使,连接,若,求的值.(东城)12.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时,的值为;当时,的值为.(用含n的式子表示)(朝阳)24.已知,在△ABC中,∠BAC=90°,AB=AC,BC=,点D、
4、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上,;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图②,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.图①图②备用图(丰台)24.在Rt△ABC中,∠ACB=90,AC=BC,CD⊥AB于点D,点E为AC边上一点,联结BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)如图1,当点E为AC中点时,线段EF与EG的数
5、量关系是;(2)如图2,当,探究线段EF与EG的数量关系并且证明;(3)如图3,当,线段EF与EG的数量关系是.图1图2图3(大兴)12.如图所示,长为4,宽为3的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上点A位置变化为,由此时长方形木板的边与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为cm.(延庆)7.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于A. B.C. D.(西城北)19.如图所示,在平面直角坐标系xOy中,正方形的边长为1,将其沿
6、轴的正方向连续滚动,即先以顶点A为旋转中心将正方形顺时针旋转90°得到第二个正方形,再以顶点D为旋转中心将第二个正方形顺时针旋转90°得到第三个正方形,依此方法继续滚动下去得到第四个正方形,…,第n个正方形.设滚动过程中的点P的坐标为.(1)画出第三个和第四个正方形的位置,并直接写出第三个正方形中的点P的坐标;(2)画出点运动的曲线(0≤≤4),并直接写出该曲线与轴所围成区域的面积.(平谷)22.如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度.把Rt△OAB沿x轴正方向平移1个单位长
7、度后得△.(1)求以A为顶点,且经过点的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.(丰台)22.小明喜欢研究问题,他将一把三角板的直角顶点放在平面直角坐标系的原点处,两条直角边与抛物线交于、两点.(1)如图1,当时,则=;(2)对同一条抛物线,当小明将三角板绕点旋转到如图2所示的位置时,过点作轴于点,测得,求出此时点的坐标;(3)对于同一条抛物线,当小明将三角板绕点旋转任意角度时,他惊奇地发现,若三角板的两条直角边与抛物线有交点,则线段总经过一个定点,请直接写出该定点的坐标.(丰台)
8、25.在平面直角坐标系xOy中,已知抛物线C1:(1)将抛物线C1先向右平移2个单位,再向上平移1个单位,得到抛物线C2,求抛物线C2的顶点P的坐标及它的解析式.(2)如果轴上有一动点M,那么在两条抛物线C1、C2上是否存在点N,使得以点O、P、M
此文档下载收益归作者所有