欢迎来到天天文库
浏览记录
ID:50738908
大小:219.50 KB
页数:14页
时间:2020-03-13
《三角形全等判定(SAS) (2).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、全等三角形的判定(SAS)1、边边边公理2、转化思想证线段位置关系(垂直、平行)角平分线求角度数、数量关系角相等证三角形全等找三条对应相等的边找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)复习作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.画法:(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA于点C,交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD长为半径画弧,交前面的弧于点D
2、1;(5)过点D1作射线O1B1,∠A1O1B1就是所求的角.探究新知1由前边的作图比较过程,我们可以得出什么结论?用符号语言表达为:在△ABC与△DEF中AB=DE∠A=∠DAC=DF∴△ABC≌△DEF(SAS)ABCDEF两边和它们的夹角对应相等的两个三角形全等。简写成“边角边”或“SAS”思考:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离.为什么?分析:如果能证明△ABC≌△DEC,就可以得出AB=DE
3、.在△ABC和△DEC中,CA=CD,CB=CE.∠ACB=∠DCE(对顶角)满足以上两个条件能否使两个三角形全等呢?探究新知2⑵边-边-角(角不夹在两边的中间,形成两边一对角)演示:把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角对应相等的两个三角形不一定全等.把你画的三角形与其他同学画的三角形进行比较,所有的三
4、角形都全等吗?探究新知⑵ABMCD结论:两边及其一边所对的角相等,两个三角形不一定全等.ABCABD练一练1、如图,B点在A点的正北方向。两车从路段AB的一端A出发,分别向东、向西进行相同的距离,到达C、D两地。此时C,D到B的距离相等吗?为什么?BDAC【证明】∵在△BAD和△BAC中,BA=BA∠BAD=∠BACAD=AC则△BAD≌△BAC(SAS).即BD=BC寻找对应相等的边角边公共边-对应边垂直-对应角(90°)中点-对应边2、如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠DADBEFC【证明】∵BF=BE+EFCE=C
5、F+FE而BE=CF∴BF=CE在△ABF和△DCE中,BF=CE∠B=∠CAB=DC∴△BAD≌△BAC(SAS)即∠A=∠D寻找对应相等的边角边相等线段同加同减-对应边3、如图,已知AB=AE,AC=AD,∠BAD=∠EAC,证明:∠B=∠EABCDE证明:∵∠BAD=∠EAC∴∠BAD+∠DAC=∠EAC+∠DAC即∠BAC=∠DAE在△ABC与△ADE中,AB=AE∠BAC=∠DAEAD=AC∴△ABC≌△AED∴∠B=∠E寻找相等的角相等的两个角同加或同减,得到相等的对应角4、如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ADB,还需要有什么
6、条件?ABCDAC=AD寻找相等的对应角角平分线寻找相等的对应边公共边证明线段相等---先证明三角形全等(SAS)寻找相等的对应角根据平行线的性质(内错角相等、同位角相等)直角三角形(直角)1、边边边公理、边角边公理—夹角2、转化思想证线段位置关系(垂直、平行)角平分线求角度数、数量关系角相等证三角形全等SSSSAS小结线段相等寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、做辅助线(构造公共边等)寻找对应相等的角:公共角、角平分线平分角、直角或垂直(90°)、平行线性质、通过计算(同加或同减)小结
此文档下载收益归作者所有