欢迎来到天天文库
浏览记录
ID:50731092
大小:84.57 KB
页数:6页
时间:2020-03-14
《中考数学冲刺复习三角形专题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中考数学冲刺复习三角形专题【课时目标】1.理解三角形及其内角、外角、中线、高线、角平分线等概念及性质,了解三角形的稳定性,会画任意三角形的角平分线、中线、高.2.探索并证明三角形的三边关系、三角形的内角和定理及外角性质,并会对三角形进行分类,会进行有关证明和计算.3.掌握线段的垂直平分线的性质定理及逆定理,角平分线的性质定理及逆定理.4.了解等腰三角形的概念,探索并证明等腰三角形的性质定理与判定定理;探索等边三角形的性质定理与判定定理,并会进行有关证明和计算.5.了解直角三角形的概念,探索并掌握直角
2、三角形的性质定理.6.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题.【知识梳理】1.三角形中三边的关系:三角形任意两边之和________第三边;任意两边之差_______第三边.2.三角形中角的关系:(1)三角形的内角和等于________.(2)三角形的一个外角等于与它_______的两个内角的(3)三角形的一个外角________与它_______的任何一个内角.3.三角形中的三条重要线段:(1)三角形的角平分线、中线、高各有_______条,它们都是________.(2)三角
3、形三条角平分线、三条中线均相交于三角形_______部的一点;三角形的三条高相交于一点,这一点可能在三角形的内部(锐角三角形)、顶点(直角三角形)或外部(钝角三角形).4.线段垂直平分线的性质与判定:线段垂直平分线上的点到_______相等;到_______的点在这条线段的垂直平分线上.5.角平分线的性质与判定:角平分线上的点到_______相等;到_______的点在这个角的平分线上.6.等腰(边)三角形:有______________的三角形叫等腰三角形;有三条边相等的三角形叫________.
4、7.等腰三角形的性质:(1)等腰三角形的两底角_______,简称为________.(2)等腰三角形的________、________、________相互重合,简称等腰三角形的“三线合一”.(3)等腰三角形是_______图形,其对称轴是_______.8.等边三角形具有等腰三角形的一切性质,同时还具有以下性质:(1)等边三角形的三个内角_______,每个角都等于________.(2)等边三角形是_______图形,其对称轴有_______条,分别是________.9.等腰三角形的判定:
5、(1)有两边相等的三角形是________.(2)在一个三角形中,如果有两个角相等,那么这两个角所对的边_______,简称为________.10.等边三角形的判定:(1)有三条边相等的三角形是_______.(2)三个角_______的三角形是等边三角形.(3)有一个角是_______的等腰三角形是等边三角形.11.直角三角形的性质:(1)直角三角形的两个锐角________.(2)直角三角形斜边上的中线等于________.(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于
6、________.(4)勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即________.12.直角三角形的判定:(1)有一个角是_______角或两锐角_______的三角形是直角三角形.(2)勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是_________.【考点例析】考点一三角形中三边的关系例1若下列各组值代表线段的长度,则不能构成三角形的是()A.3,8,4B.4,9,6C.15,20,8D.9,15,8提示 根据三角形两边之和大于第三边或两边之差小
7、于第三边进行判断.例2 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16B.18C.20D.16或20提示 已知等腰三角形的两边长,但没指出哪个是腰哪个是底,故应该分类讨论.考点二 三角形内角和定理 例3一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形提示 利用三角形内角和定理求出三角形中的角,再判断三角形的形状.考点三三角形内角和定理与外角性质的综合运用例4如图,在△ABC中,∠B=47°,三角形的外角∠DAC
8、和∠ACF的平分线交于点E,则∠AEC=_______°.提示要求∠AEC的度数,只需求出∠CAE+∠ACE的度数,由于AE、CE分别平分∠DAC、∠ACF,因此只需求出∠DAC+∠ACF的值,此时利用外角性质可知∠DAC+∠ACF=180°+∠B,从而解决了问题.考点四 线段垂直平分线的性质.例5如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为_______°. 提示要求∠EBC的度数可利用∠EBC=
此文档下载收益归作者所有