二次函数11-12教案.doc

二次函数11-12教案.doc

ID:50686705

大小:73.50 KB

页数:4页

时间:2020-03-13

二次函数11-12教案.doc_第1页
二次函数11-12教案.doc_第2页
二次函数11-12教案.doc_第3页
二次函数11-12教案.doc_第4页
资源描述:

《二次函数11-12教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1章二次函数教案总序第1个教案备课人:张波课题建立二次函数模型第1课时编写时间2014年12月1日执教时间年月日执教班级教学目标:知识与技能:1.探索并归纳二次函数的概念,熟练掌握二次函数的一般形式及自变量的取值范围。2.能够表示简单变量之间的二次函数关系。过程与方法:通过用二次函数表示变量之间关系的体验过程,增强对函数的感性认识,培养学生分析问题,解决问题的能力。情感态度价值观:通过学生之间的交流合作的过程,培养学生的合作意识,体验与他人交流合作的重要性。教学重点:建立二次函数数学模型和理解二次函数概念。教学难点:建立二次函数数学模型。教具:电脑、课件教学方法:分析法、讨论法、

2、讲授法、练习法学具:教学过程及教学内容设计:一、创设情境,导入新课1.欣赏一组录像画面:篮球场上同学们传球投篮,田径场上同学们投掷铅球……2.观察:篮球投篮时,掷铅球时……在空中运行的路线是一条什么样的路线?3.导入课题二、合作交流,解读探究(课件演示)1.通过实际问题建立二次函数模型问题一:植物园的面积(教科书“动脑筋”问题1)------植物园的面积随着砌法的不同怎样变化?问题二:电脑的价格(教科书“动脑筋”问题2)2.二次函数的概念和一般形式A.交流讨论:观察上面得出的两个函数关系式有什么共同点?B.归纳及注意:二次函数的自变量取值范围是所有实数。C.二次函数的特殊形式。三、

3、应用迁移,巩固提高(课件演示例题)1.类型之一----二次函数的概念2.类型之二----建立二次函数模型四、总结反思,拓展升华五、当堂检测反馈作业:后记:4第1章二次函数教案总序第2个教案备课人:张波课题二次函数的图象与性质第1课时编写时间2014年12月1日执教时间年月日执教班级教学目标:知识与技能:1.能够运用描点法作出函数y=ax2(a>0)的图象。2.能根据图象认识和理解二次函数y=ax2(a>0)的性质。过程与方法:通过观察图象,并概括出图象的有关性质,训练学生的观察、分析能力。情感态度价值观:通过用描点法画出函数的图象,培养学生尊重客观事实的科学态度。教学重点:会用描点

4、法画出二次函数y=ax2(a>0)的图象以及探索函数性质。教学难点:探索二次函数性质。教具:电脑、课件教学方法:分析法、讨论法、讲授法、练习法学具:教学过程及教学内容设计:一、创设情境,导入新课1.什么是二次函数?一般形式是什么?2.反比例函数的图象是什么呢?它有哪些性质?3.二次函数的图象是什么呢?它又有哪些性质?二、合作交流,解读探究(课件演示)1.画出二次函数y=x2的图象引导学生探索二次函数y=x2的图象的画法(列表、描点、连线)2.二次函数y=x2的图象的性质A.引导学生探索二次函数y=x2的图象的性质B.归纳总结二次函数y=ax2(a>0)的图象画法和性质三、应用迁移,

5、巩固提高(课件演示例题)1.类型之一----二次函数y=ax2(a>0)图象性质的运用2.类型之二----二次函数y=ax2(a>0)图象性质的实际运用例:已知正方形周长为Ccm,面积为Scm2。(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求S=1cm2出时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2。四、总结反思,拓展升华五、当堂检测反馈作业:后记:4第1章二次函数教案总序第3个教案备课人:张波课题二次函数的图象与性质第2课时编写时间2014年12月1日执教时间年月日执教班级教学目标:知识与技能:1.会用描点法画出二次函数y=ax2(a<0)的图象

6、。2.了解y=ax2与y=-ax2(a≠0)的图象的位置关系。3.理解二次函数的图象是抛物线以及抛物线的概念。过程与方法:通过观察图象,类比二次函数y=ax2(a>0)与y=ax2(a<0)两种函数图象的相互关系,培养学生的观察、分析能力,渗透数形结合的思想方法。情感态度价值观:增强学生对数学学习的好奇心与求知欲。教学重点:会用描点法画二次函数y=ax2(a<0)的图象及探索其性质。教学难点:二次函数y=ax2(a<0)的图象特点及性质的探究。教具:电脑、课件教学方法:分析法、讨论法、讲授法、练习法学具:教学过程及教学内容设计:一、创设情境,导入新课1.怎样画出函数y=ax2(a>

7、0)的图象?2.我们已画过y=x2的图象,能不能由它得出y=-x2的图象?二、合作交流,解读探究(课件演示)1.由y=x2画出y=-x2的图象A.讨论回顾:反比例函数y=与y=-的图象有什么关系?B.猜一猜:y=-x2的图象与y=x2的图象会是怎样的关系?C.验证猜想:引导学生分析讨论。2.y=-x2的图象与性质A.讨论交流:对比y=x2的图象与性质,说一说y=-x2具有哪些性质?B.归纳总结C.做一做:画出二次函数y=-x2的图象。3.抛物线及其有关概念三、应用迁移

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。