欢迎来到天天文库
浏览记录
ID:50659023
大小:1.68 MB
页数:16页
时间:2020-03-14
《新北师大版圆内接正多边形ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、8圆内接正多边形1.了解正多边形和圆内接多边形的有关概念.2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.2你还能举出更多正多边形的例子吗?3正多边形:___________,_____________的多边形叫做正多边形.正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形.三条边相等,三个角也相等(60°).四条边都相等,四个角也相等(90°).各边相等各角也相等4菱形是正多边形吗?矩形是正多边形吗?为什么?【想一想】5圆内接正多边形定义:顶点都在同一个圆上的正多边形叫做圆内接正多边形。这个圆叫做该正多边形的外接
2、圆。把一个圆n等分(n≥3),依次连接各分点,我们就可以作出一个圆内接正多边形。如图3-35,五边形ABCDE是圆O的内接正五边形,圆心O叫做这个正五边形的中心;OA是这个正五边形的半径;∠AOB是这个正五边形的中心角;OM⊥BC,垂足为M,OM是这个正五边形的的边心距。在其他的正多边形中也有同样的定义。以正多边形的中心为圆心,边心距为半径的圆与各边有何位置关系?EFCD..O中心角半径R边心距r正多边形的中心:一个正多边形的外接圆的圆心.正多边形的半径:外接圆的半径正多边形的中心角:正多边形的每一边所对的圆心角.正多边形的边心距:中心到正多边形的一边的距离.AB以正多边形的
3、中心为圆心,边心距为半径的圆为正多边形的内切圆。7例1:如图3-36,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为点G,求正六边形的中心角、边长和边心距。解:连接OC、OD∵六边形ABCDEF为正六边形∴∠COD==60°∴△COD为等边三角形∴CD=OC=4在Rt△COG中,OC=4,CG=2∴OG=∴正六边形ABCDE的中心角为60°,边长为4,边心距为。在Rt△OPC中,OC=4,PC=2.利用勾股定理,可得边心距【解析】如图,正六边形ABCDEF的中心角为60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,亭子地基的周长l=4×6=
4、24(m).亭子地基的面积OABCDEFRPr【例2】有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).9【跟踪训练】分别求出半径为R的圆内接正三角形、正方形的边长、边心距和面积.【解析】作等边△ABC的BC边上的高AD,垂足为D连接OB,则OB=R,在Rt△OBD中,∠OBD=30°,在Rt△ABD中,∠BAD=30°,·ABCDO∴AB=∴S△ABC=边心距OD=10连接OB,OC作OE⊥BC,垂足为E,∠OEB=90°,∠OBE=∠BOE=45°,Rt△OBE为等腰直角三角形,·ABCDOE11思考:当把正n边形的边数无限增多时,这时正
5、多边形就接近于什么图形?正n边形与圆的关系1.把正n边形的边数无限增多,就接近于圆.2.怎样由圆得到正多边形呢?12你能尺规作出正六边形、正三角形、正十二边形吗?OABCEF·D以半径长在圆周上截取六段相等的弧,依次连结各等分点,则作出正六边形.先作出正六边形,则可作正三角形,正十二边形,正二十四边形………13你能尺规作出正八边形吗?据此你还能作出哪些正多边形?·ABCDO只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形……141.正多边
6、形和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边形的边心距.2.正多边形的半径、正多边形的中心角、边长,正多边形的边心距之间的等量关系.通过本课时的学习,需要我们掌握:15我的成功只依赖两条:一条是毫不动摇地坚持到底;一条是用手把脑子里想出的图形一丝不差地制造出来.—蒙日
此文档下载收益归作者所有