怎样培养数学联想和想象能力.doc

怎样培养数学联想和想象能力.doc

ID:50581416

大小:64.00 KB

页数:4页

时间:2020-03-07

怎样培养数学联想和想象能力.doc_第1页
怎样培养数学联想和想象能力.doc_第2页
怎样培养数学联想和想象能力.doc_第3页
怎样培养数学联想和想象能力.doc_第4页
资源描述:

《怎样培养数学联想和想象能力.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、怎样培养数学联想和想象能力中图分类号:G633.6文献标识码:C文章编号:1008-925X(XX年制第十册分数的基本性质时,通过图形的直观感知,得出:3/4=6/8=9/12,再观察分子、分母的变化情况,学生逐步归纳出分数的基本性质,但往往把“0除外”丢了。这时可以及时启发学生从分数与除法关系的原型中展开联想,发现分母相当于除法中的除数,分数的分子、分母同乘以(或除以)相同的数,必须补上"0除外”,否则这一性质不能成立,从而使学生深刻地理解了分数的基本性质。2.1.2诱导接近联想,提供解决问题的途径。如义务教材五年制第八册梯形面积的计算,是在学生学会平行四边形、三角形面积计算的基

2、础上进行教学的。因此,可以引导学生联想推导三角形面积公式的方法,让学生自己把梯形转化成已经学过的平行四边形来计算它的面积,总结出梯形面积计算公式。2.1.3培养对比联想,训练逆向思维。有些教材内容本身具有可逆性质,如加法与减法、乘法与除法的相互关系等。教学时分析知识的可逆结构,实际上就是为学生进行对比联想打基础。如教学乘法分配律,当学生掌握了(5+3)X4=5X4+3X4时,不仅让学生练习(5+3)X4=X+X;9X(4+6)=X+9Xo还可让学生填下面的方框。5X4+3X4=(5+3)XQ;5X4+3X4=QX(□+匚])或者设计趣味练习:AX(□+o)=x+x;Axn+oxn=

3、(+)xo思维的灵活性与可逆联想有着密切的关系。学生掌握了知识的可逆性,再经过训练,思考问题时,不仅能正向思维,而且会逆向思维。但必须注意,有的知识逆推后,答案不止一个,有的知识不可以逆推,即不存在可逆性。2.2想象能力的培养:思维过程有了想象的参与,智力才能得到发展。要培养学生的创造性思维,离开想象不可能取得成效。正如伟大的科学家爱因斯坦所说的:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动着进步,并且是知识进化的源泉。”2.2.1在知识的发生、形成过程中,培养学生的想象力。例如,在认识直线时,先让学生认识线段,形成线段的概念,建立线段是直的、有两个端点

4、、是有限长的表象;然后把线段的两端向相反方向延长,引导学生用“直”的表象和延长的动态表象,去想象这条直线穿越空间,没有尽头,帮助学生建立直线没有端点、是无限长的表象,形成直线的概念。2.2.2在知识的发展、应用过程中,训练学生的想象力。有位教师教学分数意义时,在学生理解了分数的意义后,要学生在下面的正方形中画出表示分数3/4的阴影部分,并标出它的分数单位,学生画出了图形。2.2.3在探索解题思路的过程中,发展学生的想象力。美国数学家斯蒂恩说:“如果一个特定的问题可以被转化为一个图形,那么,思想就整体地把握了问题,并且能创造性地思索问题的解法。”当学生解题思路受阻时,我们引导学生用图

5、解法寻求解题途径,这实际上就是让学生运用再造想象,创造性地探索问题的解法。2.2.4在故设障碍的辨析中,激活想象力。为了促进想象能力的发展,教学中设计一些干扰性练习,让学生在扫除障碍中,透过现象看本质,保持正确认识。2.3需要重视的几个问题:2.3.1引导学生正确地进行观察。要培养学生的想象和联想能力,首先要提高观察能力。教给学生科学的观察方法,结合教学内容进行有效地观察训练。要求学生观察时做到四要:一要认真细致,二要有序有向,三要全面深刻,四要有静有动。2.3.2丰富表象积累,培养形象记忆。形象记忆是把外界信息转化成记忆可以接受的形象编码。没有形象记忆,就没有表象的积累,而表象的

6、数量和质量决定着联想和想象的水平。因此,在基础知识的教学中,要让学生动用多种感官,充分感知,增加形象信息量的储存,建立完整、清晰、丰富的表象。如演示时伴有醒目板书,操作后让学生复述,对学过的图形要求学生默画等,都是培养形象记忆的有效手段。2.3.3丰富语言,发展抽象思维。联想和想象都需要思维和语言的配合,同时也受其制约。有了语言与抽象思维的参与调节,学生的联想才会更丰富,想象的构思才能更广阔,更具有逻辑性。因此,要十分重视学生数学语言的培养和训练,做到抽象思维和形象思维互助互补。2.3.4鼓励学生质疑问难。联想和想象往往是从疑问产生的。平时教学中,要启发学生大胆地提出疑问,对天真幼

7、稚的问题也要耐心解释,保护学生的积极性,逐步引导学生有目的地为解决问题设疑、质疑。通过质疑问难,发展学生潜在的联想和想象能力。2.3.5设计富有创造性的练习。有位低年级老师设计了“6+6+6+6+4”这样一道题,班上学生想出如下三种解法:①6X4+4;②6X3+10;③6X5-2o显然后两种解法有创造性,特别是第三种解法,想象出了看不见的“6”,思维层次更高。又如:1/4X()=1/6X()=1/7X(),这题既可以从倒数的意义去想,也可以从分数乘法的角度去想,还可以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。