欢迎来到天天文库
浏览记录
ID:50553309
大小:2.67 MB
页数:7页
时间:2020-03-10
《2020版高考数学课时规范练11函数的图像理北师大版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、添加微信:gzxxzlk或扫描下面二维码输入高考干货领取更多资料资料正文内容下拉开始>>课时规范练11 函数的图像基础巩固组1.函数f(x)=则y=f(x+1)的图像大致是( )2.已知f(x)=2x,则函数y=f(
2、x-1
3、)的图像为( )3.(2018浙江,5)函数y=2
4、x
5、sin2x的图像可能是( )74.函数y=1+x+的部分图像大致为( )5.已知函数f(x)=x2+ex-(x<0)与g(x)=x2+ln(x+a)的图像上存在关于y轴对称的点,则a的取值范围是( )A.B.(-∞,)C.D.6.(2018衡水中学押题二,
6、7)函数y=sinx+ln
7、x
8、在区间[-3,3]的图像大致为( )7.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=
9、x2-2x-3
10、与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi=( )A.0B.mC.2mD.4m8.已知函数f(x)满足f(x+1)=-f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x2.若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围为 . 综合提升组79.已知当011、范围是( )A.B.C.(1,)D.(,2)10.(2018湖南长郡中学四模,8)若实数x,y满足12、x-113、-ln=0,则y关于x的函数图像大致形状是( )11.已知f(x)=则函数y=2f2(x)-3f(x)+1的零点个数是 . 12.(2018河北衡水中学押题二,16)已知函数f(x)=若函数g(x)=f(x)+3m有3个零点,则实数m的取值范围是 . 创新应用组13.(2018河北衡水中学金卷一模,12)若函数y=f(x)满足:①f(x)的图像是中心对称图形;②当x∈D时,f(x)图像上的点到其对称中心的距离不超过一14、个正数M,则称f(x)是区间D上的“M对称函数”.若函数f(x)=(x+1)3+m(m>0)是区间[-4,2]上的“M对称函数”,则实数M的取值范围是( )A.[3,+∞)B.[,+∞)C.(0,3]D.(3,+∞)14.(2018河北衡水中学17模,9)函数y=x∈的图像大致是( )15.已知函数f(x)是定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=3x.若15、f(x)的图像向左平移一个单位即得到y=f(x+1)的图像.故选B.2.D f(16、x-117、)=218、x-119、.当x=0时,y=2.可排除选项A,C.当x=-1时,y=4.可排除选项B.故选D.3.D 因为在函数y=220、x21、sin2x中,y1=222、x23、为偶函数,y2=sin2x为奇函数,所以y=224、x25、sin2x为奇函数.所以排除选项A,B.当x=0,x=,x=π时,sin2x=0,故函数y=226、x27、sin2x在[0,π]上有三个零点,排除选项C,故选D.4.D 当x=1时,y=1+1+sin1=2+sin1>2,故排除A,C;当x→+∞时,y→28、+∞,故排除B,满足条件的只有D,故选D.5.B 由已知得与函数f(x)的图像关于y轴对称的图像的解析式为h(x)=x2+e-x-(x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图像,显然当a≤0时,函数y=ln(x+a)的图像与M(x)的图像一定有交点.当a>0时,若函数y=ln(x+a)的图像与M(x)的图像有交点,则lna<,则029、x30、,当x>0时,f(x)=sinx+lnx⇒F'(x)=cosx+,当x∈(0,1)时,f'(x)>0,即31、函数f(x)在(0,1)上是增加的,排除B;当x=1时,f(1)=sin1>0,排除D;因为f(-x)=sin(-x)+ln32、-x33、=-sinx+ln34、x35、≠±f(x),所以函数f(x)为非奇非偶函数,排除C,故选A.7.B 由题意可知,y=f(x)与y=36、x2-2x-337、的图像都关于直线x=1对称,所以它们的交点也关于直线x=1对称.当m为偶数时,xi=2·=m;7当m为奇数时,xi=2·+1=m,故选B.8. 依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内38、有4个零点,即函数y=f(x)与y=k(x+1)的图像在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图像(如图所示),注意直线y=k(x+
11、范围是( )A.B.C.(1,)D.(,2)10.(2018湖南长郡中学四模,8)若实数x,y满足
12、x-1
13、-ln=0,则y关于x的函数图像大致形状是( )11.已知f(x)=则函数y=2f2(x)-3f(x)+1的零点个数是 . 12.(2018河北衡水中学押题二,16)已知函数f(x)=若函数g(x)=f(x)+3m有3个零点,则实数m的取值范围是 . 创新应用组13.(2018河北衡水中学金卷一模,12)若函数y=f(x)满足:①f(x)的图像是中心对称图形;②当x∈D时,f(x)图像上的点到其对称中心的距离不超过一
14、个正数M,则称f(x)是区间D上的“M对称函数”.若函数f(x)=(x+1)3+m(m>0)是区间[-4,2]上的“M对称函数”,则实数M的取值范围是( )A.[3,+∞)B.[,+∞)C.(0,3]D.(3,+∞)14.(2018河北衡水中学17模,9)函数y=x∈的图像大致是( )15.已知函数f(x)是定义在R上的偶函数,且f(x+2)=f(x),当x∈[0,1]时,f(x)=3x.若15、f(x)的图像向左平移一个单位即得到y=f(x+1)的图像.故选B.2.D f(16、x-117、)=218、x-119、.当x=0时,y=2.可排除选项A,C.当x=-1时,y=4.可排除选项B.故选D.3.D 因为在函数y=220、x21、sin2x中,y1=222、x23、为偶函数,y2=sin2x为奇函数,所以y=224、x25、sin2x为奇函数.所以排除选项A,B.当x=0,x=,x=π时,sin2x=0,故函数y=226、x27、sin2x在[0,π]上有三个零点,排除选项C,故选D.4.D 当x=1时,y=1+1+sin1=2+sin1>2,故排除A,C;当x→+∞时,y→28、+∞,故排除B,满足条件的只有D,故选D.5.B 由已知得与函数f(x)的图像关于y轴对称的图像的解析式为h(x)=x2+e-x-(x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图像,显然当a≤0时,函数y=ln(x+a)的图像与M(x)的图像一定有交点.当a>0时,若函数y=ln(x+a)的图像与M(x)的图像有交点,则lna<,则029、x30、,当x>0时,f(x)=sinx+lnx⇒F'(x)=cosx+,当x∈(0,1)时,f'(x)>0,即31、函数f(x)在(0,1)上是增加的,排除B;当x=1时,f(1)=sin1>0,排除D;因为f(-x)=sin(-x)+ln32、-x33、=-sinx+ln34、x35、≠±f(x),所以函数f(x)为非奇非偶函数,排除C,故选A.7.B 由题意可知,y=f(x)与y=36、x2-2x-337、的图像都关于直线x=1对称,所以它们的交点也关于直线x=1对称.当m为偶数时,xi=2·=m;7当m为奇数时,xi=2·+1=m,故选B.8. 依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内38、有4个零点,即函数y=f(x)与y=k(x+1)的图像在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图像(如图所示),注意直线y=k(x+
15、f(x)的图像向左平移一个单位即得到y=f(x+1)的图像.故选B.2.D f(
16、x-1
17、)=2
18、x-1
19、.当x=0时,y=2.可排除选项A,C.当x=-1时,y=4.可排除选项B.故选D.3.D 因为在函数y=2
20、x
21、sin2x中,y1=2
22、x
23、为偶函数,y2=sin2x为奇函数,所以y=2
24、x
25、sin2x为奇函数.所以排除选项A,B.当x=0,x=,x=π时,sin2x=0,故函数y=2
26、x
27、sin2x在[0,π]上有三个零点,排除选项C,故选D.4.D 当x=1时,y=1+1+sin1=2+sin1>2,故排除A,C;当x→+∞时,y→
28、+∞,故排除B,满足条件的只有D,故选D.5.B 由已知得与函数f(x)的图像关于y轴对称的图像的解析式为h(x)=x2+e-x-(x>0).令h(x)=g(x),得ln(x+a)=e-x-,作函数M(x)=e-x-的图像,显然当a≤0时,函数y=ln(x+a)的图像与M(x)的图像一定有交点.当a>0时,若函数y=ln(x+a)的图像与M(x)的图像有交点,则lna<,则029、x30、,当x>0时,f(x)=sinx+lnx⇒F'(x)=cosx+,当x∈(0,1)时,f'(x)>0,即31、函数f(x)在(0,1)上是增加的,排除B;当x=1时,f(1)=sin1>0,排除D;因为f(-x)=sin(-x)+ln32、-x33、=-sinx+ln34、x35、≠±f(x),所以函数f(x)为非奇非偶函数,排除C,故选A.7.B 由题意可知,y=f(x)与y=36、x2-2x-337、的图像都关于直线x=1对称,所以它们的交点也关于直线x=1对称.当m为偶数时,xi=2·=m;7当m为奇数时,xi=2·+1=m,故选B.8. 依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内38、有4个零点,即函数y=f(x)与y=k(x+1)的图像在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图像(如图所示),注意直线y=k(x+
29、x
30、,当x>0时,f(x)=sinx+lnx⇒F'(x)=cosx+,当x∈(0,1)时,f'(x)>0,即
31、函数f(x)在(0,1)上是增加的,排除B;当x=1时,f(1)=sin1>0,排除D;因为f(-x)=sin(-x)+ln
32、-x
33、=-sinx+ln
34、x
35、≠±f(x),所以函数f(x)为非奇非偶函数,排除C,故选A.7.B 由题意可知,y=f(x)与y=
36、x2-2x-3
37、的图像都关于直线x=1对称,所以它们的交点也关于直线x=1对称.当m为偶数时,xi=2·=m;7当m为奇数时,xi=2·+1=m,故选B.8. 依题意得f(x+2)=-f(x+1)=f(x),即函数f(x)是以2为周期的函数.g(x)=f(x)-kx-k在区间[-1,3]内
38、有4个零点,即函数y=f(x)与y=k(x+1)的图像在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y=f(x)的图像(如图所示),注意直线y=k(x+
此文档下载收益归作者所有