欢迎来到天天文库
浏览记录
ID:50371710
大小:231.00 KB
页数:5页
时间:2020-03-05
《高考排列、二项分布、概率.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.(2013.12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.2.(2012.3)设集合A={0,2,4},B={1,3,5},分别从A、B中任取2个元素组成无重复数字的四位数,其中能被5整除的数共有( )A.24个B.48个C.64个D.116个3.(2011.12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个。(用数字作答)4.(2010.4)8名学生和2位第师站成一排合影,2位老
2、师不相邻的排法种数为()(A)(B)(C)(D)5.(2009.6)若为有理数),则A.45B.55C.70D.806.(2008.11)若展开式的各项系数之和为32,则,其展开式中的常数项为.(用数字作答)7.(2007.5)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种B.960种C.720种D.480种8.(2006.3)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A)36个(B)24个(C)18个(D)6个9
3、.(2005.7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A)(B)(C)(D)10.(2005.11)的展开式中的常数项是(用数字作答)11.(2004.7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种。在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于()(A)(B)(C)(D)12.(2012.12)某中学为了解学生数学课程的学习情况,在3000名学生中随机抽
4、取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如下图).根据频率分布直方图推测,推测这3000名学生在该次数学考试中成绩小于60分的学生数是________.13.(2013.16)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气重度污染的概率;(Ⅱ)设是此人停留期间空气质量优良的天数,求的分布列与数学期望;(Ⅲ)
5、由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)14.(2012.17)某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,分别测出它们的高度如下(单位:cm)甲:19202123252932333741乙:10263030343744464647甲乙1234(I)用茎叶图表示上述两组数据,并对两块地抽取树苗的高度的平均数和中位数进行比较,写出两个统计结论;(II)现苗圃基地将甲、乙两块地的树苗合在一起,按高度分成一、二两个等级,每个等级按不同的价格出
6、售.某市绿化部门下属的2个单位计划购买甲、乙两地种植的树苗.已知每个单位购买每个等级树苗所需费用均为5万元,且每个单位对每个等级树苗买和不买的可能性各占一半,求该市绿化部门此次采购所需资金总额的分布列及数学期望值15.(2011.17)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(注:方差,其中为,,……的平
7、均数)16.(2010.17)m某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为ξ0123(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求,的值;(Ⅲ)求数学期望ξ。17.(2009.17)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min。(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红
8、灯的概率;w.w.w.k.s.5.u.c.o.m(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望。18.(2008.17)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.19.(
此文档下载收益归作者所有