课时作业(63)n次独立重复试验与二项分布.doc

课时作业(63)n次独立重复试验与二项分布.doc

ID:50317229

大小:78.00 KB

页数:5页

时间:2020-03-08

课时作业(63)n次独立重复试验与二项分布.doc_第1页
课时作业(63)n次独立重复试验与二项分布.doc_第2页
课时作业(63)n次独立重复试验与二项分布.doc_第3页
课时作业(63)n次独立重复试验与二项分布.doc_第4页
课时作业(63)n次独立重复试验与二项分布.doc_第5页
资源描述:

《课时作业(63)n次独立重复试验与二项分布.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课时作业(六十三) 第63讲 n次独立重复试验与二项分布时间:45分钟  分值:100分1.下列说法正确的是(  )A.P(A

2、B)=P(B

3、A)B.0

4、A)<1C.P(AB)=P(A)·P(B

5、A)D.P(B

6、A)=12.2010·辽宁卷两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(  )A.B.C.D.3.2010·湖北卷投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率

7、是(  )A.B.C.D.4.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值为(  )A.0B.1C.2D.35.2011·浙江五校联考位于直角坐标原点的一个质点P按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为,向右移动的概率为,则质点P移动五次后位于点(1,0)的概率是(  )A.B.C.D.6.在4次独立重复试验中,事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率p的取值范围是(  )A.0.4,1)B.(0,0.4)C.(0,0.6D.0

8、.6,1)7.在5道题中有三道数学题和两道物理题,如果不放回的依次抽取2道题,则在第一次抽到数学题的条件下,第二次抽到数学题的概率是(  )A.B.C.D.8.2011·辽宁卷从1,2,3,4,5中任取2个不同的数,事件A表示“取到的2个数之和为偶数”,事件B表示“取到的2个数均为偶数”,则P(B

9、A)=(  )A.B.C.D.9.2010·江西卷一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概

10、率分别记为p1和p2.则(  )A.p1=p2B.p1p2D.以上三种情况都有可能10.2010·重庆卷加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________.11.2011·湖南卷如图K63-1,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________;(2)P(B

11、A)=________.图K63-1

12、12.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局胜者对第一局的败者,第四局是第三局胜者对第二局败者,则乙队连胜四局的概率为________.13.2010·安徽卷甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是______

13、____(写出所有正确结论的序号).①P=;②P=;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.14.(10分)2011·泸州高中一模某果园要用三辆汽车将一批水果从所在城市E运至销售城市F,已知从城市E到城市F有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为,不堵车的概率为;走公路Ⅱ堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.(1)求甲、乙两辆汽车中恰有一辆堵车的概率;

14、(2)求三辆汽车中至少有两辆堵车的概率.15.(13分)2011·长安一中质检甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为p,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.(1)求p的值;(2)设X表示比赛停止时已比赛的局数,求随机变量X的分布列和数学期望EX.16.(12分)某人向一目标射击4次,每次击中目标的概率为.该目标分为3个不同的部分,第一、二、三部分面积之比为1∶3∶6.击中目标时,击中任何一部分的概率与其面积成正比.(1)设X表示目标被击

15、中的次数,求X的分布列;(2)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A).课时作业(六十三)【基础热身】1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。