微分方程模型.ppt

微分方程模型.ppt

ID:50248681

大小:2.42 MB

页数:31页

时间:2020-03-07

微分方程模型.ppt_第1页
微分方程模型.ppt_第2页
微分方程模型.ppt_第3页
微分方程模型.ppt_第4页
微分方程模型.ppt_第5页
资源描述:

《微分方程模型.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、微分方程模型5.1传染病模型5.2经济增长模型5.3正规战与游击战5.4药物在体内的分布与排除5.5香烟过滤嘴的作用5.6人口预测和控制5.7烟雾的扩散与消失5.8万有引力定律的发现5.1传染病模型问题描述传染病的传播过程分析受感染人数的变化规律预报传染病高潮到来的时刻预防传染病蔓延的手段按照传播过程的一般规律,用机理分析方法建立模型已感染人数(病人)i(t)每个病人每天有效接触(足以使人致病)人数为模型1假设若有效接触的是病人,则不能使病人数增加必须区分已感染者(病人)和未感染者(健康人)建模?模型2区分已感染者(病人)和未感染者(健康人)假设1)总人数N不变,病人和健康人的比例分

2、别为2)每个病人每天有效接触人数为,且使接触的健康人致病建模~日接触率SI模型模型21/2tmii010ttm~传染病高潮到来时刻(日接触率)tmLogistic模型病人可以治愈!?t=tm,di/dt最大模型3传染病无免疫性——病人治愈成为健康人,健康人可再次被感染增加假设SIS模型3)病人每天治愈的比例为~日治愈率建模~日接触率1/~感染期~一个感染期内每个病人的有效接触人数,称为接触数。模型4传染病有免疫性——病人治愈后即移出感染系统,称移出者SIR模型假设1)总人数N不变,病人、健康人和移出者的比例分别为2)病人的日接触率,日治愈率,接触数=/建

3、模需建立的两个方程模型4SIR模型无法求出的解析解在相平面上研究解的性质5.2经济增长模型增加生产发展经济增加投资增加劳动力提高技术建立产值与资金、劳动力之间的关系研究资金与劳动力的最佳分配,使投资效益最大调节资金与劳动力的增长率,使经济(生产率)增长1.道格拉斯(Douglas)生产函数产值Q(t)F为待定函数资金K(t)劳动力L(t)技术f(t)=f0模型假设静态模型每个劳动力的产值每个劳动力的投资z随着y的增加而增长,但增长速度递减yg(y)01.道格拉斯(Douglas)生产函数含义?Douglas生产函数Bernoulli方程5.3正规战与游击战战争分类:正规战争,游击战争,

4、混合战争只考虑双方兵力多少和战斗力强弱兵力因战斗及非战斗减员而减少,因增援而增加战斗力与射击次数及命中率有关建模思路和方法为用数学模型讨论社会领域的实际问题提供了可借鉴的示例第一次世界大战Lanchester提出预测战役结局的模型一般模型每方战斗减员率取决于双方的兵力和战斗力每方非战斗减员率与本方兵力成正比甲乙双方的增援率为u(t),v(t)f,g取决于战争类型x(t)~甲方兵力,y(t)~乙方兵力模型假设模型正规战争模型甲方战斗减员率只取决于乙方的兵力和战斗力双方均以正规部队作战忽略非战斗减员假设没有增援f(x,y)=ay,a~乙方每个士兵的杀伤率a=rypy,ry~射击率,py~

5、命中率游击战争模型双方都用游击部队作战甲方战斗减员率还随着甲方兵力的增加而增加忽略非战斗减员假设没有增援f(x,y)=cxy,c~乙方每个士兵的杀伤率c=rypyry~射击率py~命中率py=sry/sxsx~甲方活动面积sry~乙方射击有效面积0混合战争模型甲方为游击部队,乙方为正规部队乙方必须10倍于甲方的兵力设x0=100,rx/ry=1/2,px=0.1,sx=1(km2),sry=1(m2)5.4药物在体内的分布与排除药物进入机体形成血药浓度(单位体积血液的药物量)血药浓度需保持在一定范围内——给药方案设计药物在体内吸收、分布和排除过程——药物动力学建立房室模型——药物动力

6、学的基本步骤房室——机体的一部分,药物在一个房室内均匀分布(血药浓度为常数),在房室间按一定规律转移本节讨论二室模型——中心室(心、肺、肾等)和周边室(四肢、肌肉等)中心室周边室给药排除模型假设中心室(1)和周边室(2),容积不变药物在房室间转移速率及向体外排除速率,与该室血药浓度成正比药物从体外进入中心室,在二室间相互转移,从中心室排出体外模型建立线性常系数非齐次方程对应齐次方程通解模型建立过滤嘴的作用与它的材料和长度有什么关系人体吸入的毒物量与哪些因素有关,其中哪些因素影响大,哪些因素影响小。模型分析分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。设想一个“机器人”在典型环境

7、下吸烟,吸烟方式和外部环境认为是不变的。问题5.5香烟过滤嘴的作用模型假设定性分析1)l1~烟草长,l2~过滤嘴长,l=l1+l2,毒物量M均匀分布,密度w0=M/l12)点燃处毒物随烟雾进入空气和沿香烟穿行的数量比是a´:a,a´+a=13)未点燃的烟草和过滤嘴对随烟雾穿行的毒物的(单位时间)吸收率分别是b和4)烟雾沿香烟穿行速度是常数v,香烟燃烧速度是常数u,v>>uQ~吸一支烟毒物进入人体总量模型建立0t=0,x=0,点燃香烟q(x,t

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。