蒙特卡罗方法详细讲解与MATLAB实现.ppt

蒙特卡罗方法详细讲解与MATLAB实现.ppt

ID:50134347

大小:658.00 KB

页数:35页

时间:2020-03-05

蒙特卡罗方法详细讲解与MATLAB实现.ppt_第1页
蒙特卡罗方法详细讲解与MATLAB实现.ppt_第2页
蒙特卡罗方法详细讲解与MATLAB实现.ppt_第3页
蒙特卡罗方法详细讲解与MATLAB实现.ppt_第4页
蒙特卡罗方法详细讲解与MATLAB实现.ppt_第5页
资源描述:

《蒙特卡罗方法详细讲解与MATLAB实现.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、蒙特卡罗方法概述蒙特卡罗方法的基本思想蒙特卡罗方法的收敛性,误差蒙特卡罗方法的特点蒙特卡罗方法的主要应用范围作业蒙特卡罗方法又称随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和电子计算机的发明,这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子

2、计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。两个例子例1.蒲丰氏问题例2.射击问题(打靶游戏)基本思想计算机模拟试验过程例1.蒲丰氏问题为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a(l<a)的平行线相交的频率代替概率P,再利用准确的关系式:求出π值其中N为投计次数,n为针与平行线相交次数。这就是古典概率论中著名的蒲丰氏问题。一些人进行了实验,其结果列于下表:实验者年份投计次数

3、π的实验值沃尔弗(Wolf)185050003.1596斯密思(Smith)185532043.1553福克斯(Fox)189411203.1419拉查里尼(Lazzarini)190134083.1415929例2.射击问题(打靶游戏)设r表示射击运动员的弹着点到靶心的距离,g(r)表示击中r处相应的得分数(环数),f(r)为该运动员的弹着点的分布密度函数,它反映运动员的射击水平。该运动员的射击成绩为用概率语言来说,是随机变量g(r)的数学期望,即现假设该运动员进行了N次射击,每次射击的弹着点依次为r1,r2,…,rN,则N次得分g(r1),g(r2),…,

4、g(rN)的算术平均值代表了该运动员的成绩。换言之,为积分的估计值,或近似值。在该例中,用N次试验所得成绩的算术平均值作为数学期望的估计值(积分近似值)。基本思想由以上两个例子可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。或者说,某种事件的概率也是随机变量(仅取值为1或0)的数学期望。因此,可以通俗地

5、说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量g(r)的数学期望通过某种试验,得到N个观察值r1,r2,…,rN(用概率语言来说,从分布密度函数f(r)中抽取N个子样r1,r2,…,rN,),将相应的N个随机变量的值g(r1),g(r2),…,g(rN)的算术平均值作为积分的估计值(近似值)。为了得到具有一定精确度的近似解,所需试验的次数是很多的,通过人工方法作大量的试验相当困难,甚至是不可能的。因此,蒙特卡罗方法的基本思想虽然早已被人们提出,却很少被使用。本世纪四十年代以来,由于电子计算机的出现,使得人们可

6、以通过电子计算机来模拟随机试验过程,把巨大数目的随机试验交由计算机完成,使得蒙特卡罗方法得以广泛地应用,在现代化的科学技术中发挥应有的作用。计算机模拟试验过程计算机模拟试验过程,就是将试验过程(如投针,射击)化为数学问题,在计算机上实现。以上述两个问题为例,分别加以说明。例1.蒲丰氏问题例2.射击问题(打靶游戏)由上面两个例题看出,蒙特卡罗方法常以一个“概率模型”为基础,按照它所描述的过程,使用由已知分布抽样的方法,得到部分试验结果的观察值,求得问题的近似解。例1.蒲丰氏问题设针投到地面上的位置可以用一组参数(x,θ)来描述,x为针中心的坐标,θ为针与平行线的夹角,

7、如图所示。任意投针,就是意味着x与θ都是任意取的,但x的范围限于[0,a],夹角θ的范围限于[0,π]。在此情况下,针与平行线相交的数学条件是针在平行线间的位置如何产生任意的(x,θ)?x在[0,a]上任意取值,表示x在[0,a]上是均匀分布的,其分布密度函数为:类似地,θ的分布密度函数为:因此,产生任意的(x,θ)的过程就变成了由f1(x)抽样x及由f2(θ)抽样θ的过程了。由此得到:其中ξ1,ξ2均为(0,1)上均匀分布的随机变量。每次投针试验,实际上变成在计算机上从两个均匀分布的随机变量中抽样得到(x,θ),然后定义描述针与平行线相交状况的随机变量s(x,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。